http://iet.metastore.ingenta.com
1887

Stable controller design for MIMO systems: an LMI approach

Stable controller design for MIMO systems: an LMI approach

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A unified approach to the strong stabilisation problem and the H strong stabilisation problem is presented. New sufficient conditions for the existence of strongly stabilising controllers and stable H controllers are derived, in a unified manner, in terms of the solvability of a positive real controller synthesis problem and a multi-objective control problem, respectively. A linear matrix inequality (LMI) technique developed by Scherer et al. is adopted to make the most use of its power to deal with the general case of the problems. Several advantages brought by the adopted LMI technique are explored. New parameterisations of stable controllers for both the problems are discussed. In particular, the parameterisations are independent of a particular method for solving strong stabilisation problems. Explicit state-space synthesis algorithms are given and numerical examples are provided to demonstrate the potential of the proposed methods.

References

    1. 1)
      • D.C. Youla , J.J. Bongiorno , N.C. Lu . Single-loop feedback stabilization of linear multivariable dynamical plants. Automatica , 159 - 173
    2. 2)
      • M. Vidyasagar . (1985) Control system synthesis: a factorization approach.
    3. 3)
      • P. Dorato , H. Park , Y. Li . An algorithm for interpolation with units in H∞, with applications to feedback stabilization. Automatica , 427 - 430
    4. 4)
      • A. Saif , D.W. Gu , I. Postlethwaite . Strong stabilization of MIMO systems via unimodular interpolation in H∞. Int. J. Control , 797 - 818
    5. 5)
      • A. Saif , D.W. Gu , I. Postlethwaite . Strong stabilization of MIMO systems via H∞ optimization. Syst. Control Lett. , 111 - 120
    6. 6)
      • K. Glover , J.C. Doyle . State-space formulas for all stabilizing controllers that satisfy an H∞–norm bound and relations to risk sensitivity. Syst. Control Lett. , 167 - 172
    7. 7)
      • J.C. Doyle , K. Glover , P.P. Khargonekar , B.A. Francis . State-space solutions to standard H2 and H∞ control problems. IEEE Trans. Autom. Control , 831 - 847
    8. 8)
      • K. Zhou , J.C. Doyle . (1997) Essentials of robust control.
    9. 9)
      • Sideris, A., Safonov, M.G.: `Infinity-norm optimization with a stable controller', Proc. American Control Conf., 1985, Boston, MA, p. 804–805.
    10. 10)
      • Ganesh, C., Pearson, J.B.: `Design of optimal control systems with stable feedback', Proc. American Control Conf., 1986, Seattle, WA, p. 1969–1973.
    11. 11)
      • H. Ito , H. Ohmori , A. Sano . Design of stable controllers attaining low H∞ weighted sensitivity. IEEE Trans. Autom. Control , 485 - 488
    12. 12)
      • Y.W. Wang , W.M. Haddad , D.S. Bernstein . Robust strong stabilization via modified Popov controller synthesis. IEEE Trans. Autom. Control , 2284 - 2287
    13. 13)
      • Wang, Y.W., Bernstein, D.S.: ` suboptimal stable stabilization', Proc. 32nd IEEE Conf. Decision and Control, 1993, San Antonio, TX, p. 1828–1829.
    14. 14)
      • Jacobus, M., Jamshidi, M., Abdallah, C., Dorato, P., Bernstein, D.: `Suboptimal strong stabilization using fixed-order dynamic compensation', Proc. American Control Conf., 1990, San Diego, CA, p. 2659–2660.
    15. 15)
      • Kapila, V., Haddad, V.M.: ` and mixed ', Proc. 34th IEEE Conf. Decision and Control, 1995, New Orleans, LA, p. 1911–1916.
    16. 16)
      • Arelhi, R., Johnson, M.A., Wilkei, J.: `LQG stable stabilizing control: some recent results', Proc. 36th IEEE Conf. Decision and Control, 1997, San Diego, CA, p. 1431–1436.
    17. 17)
      • Trofino, A.: `Robust, stable and reduced order dynamic output feedback controllers with guaranteed ', Proc. 41st IEEE Conf. Decision and Control, 2002, Nevada, p. 3470–3475.
    18. 18)
      • M. Zeren , H. Özbay . On the synthesis of stable H∞ controllers. IEEE Trans. Autom. Control , 431 - 435
    19. 19)
      • M. Zeren , H. Özbay . On the strong stabilization and stable H∞ controller design for MIMO systems. Automatica , 1675 - 1684
    20. 20)
      • Y. Choi , W.K. Chung . On the stable H∞ controller parameterization under sufficient condition. IEEE Trans. Autom. Control , 1618 - 1623
    21. 21)
      • P.H. Lee , Y.C. Soh . Synthesis of stable H∞ controller via the chain scattering framework. Syst. Control Lett. , 121 - 127
    22. 22)
      • D.U. Campos-Delgado , K. Zhou . H∞ strong stabilization. IEEE Trans. Autom. Control , 1968 - 1972
    23. 23)
      • D.U. Campos-Delgado , K. Zhou . A parametric optimization approach to H∞ and H2 strong stabilization. Automatica , 1205 - 1211
    24. 24)
      • Chou, Y.S., Wu, T.Z., Leu, J.L.: `On strong stabilization and ', Proc. 42nd IEEE Conf. Decision and Control, 2003, Maui, Hawaii, p. 5155–5160.
    25. 25)
      • S. Gumussoy , H. Özbay . Remarks on strong stabilization and stable H∞ controller design. IEEE Trans. Autom. Control , 2083 - 2087
    26. 26)
      • Y.Y. Cao , J. Lam . On simultaneous H∞ control and strong H∞ stabilization. Automatica , 859 - 865
    27. 27)
      • G.H. Yang , J.L. Wang , Y.C. Soh , J. Lam . Stable controller synthesis for linear time-invariant systems. Int. J. Control , 154 - 162
    28. 28)
      • P. Gahinet , A. Nemirovski , A.J. Laub , M. Chilali . (1995) Manual of LMI control toolbox.
    29. 29)
      • M.C. Smith , K.P. Sondergeld . On the order of stable compensators. Automatica , 27 - 129
    30. 30)
      • L. Turan , M.G. Safonov , C.H. Huang . Synthesis of positive real feedback system: a simple derivation via Parrott's theorem. IEEE Trans. Autom. Control , 1154 - 1157
    31. 31)
      • J.Y. Ishihara , R.M. Sales . Doubly coprime factorizations related to any stabilizing controllers in state space. Automatica , 1573 - 1577
    32. 32)
      • W. Sun , P.P. Khargonekar , D. Shim . Solution to the positive real control problem for linear time-invariant systems. IEEE Trans. Autom. Control , 2034 - 2046
    33. 33)
      • C. Scherer , P. Gahinet , M. Chilali . Multiobjective output-feedback control via LMI optimization. IEEE Trans. Autom. Control , 896 - 911
    34. 34)
      • J.B. Wei , L. Lee . Extended H2 and H∞ control for continuous-time systems via LMI optimization. ROC Automatic Control Conf. , 666 - 679
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta_20060063
Loading

Related content

content/journals/10.1049/iet-cta_20060063
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address