Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Synthesis of active fault-tolerant control based on Markovian jump system models

Synthesis of active fault-tolerant control based on Markovian jump system models

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this paper active fault-tolerant control (FTC) is designed in a stochastic framework. The fault-tolerant control system (FTCS) is formulated as a set of linear systems governed by two continuous-time finite-state Markov chains, which are used to characterise the system failure modes and the fault detection and isolation (FDI) scheme. This framework is widely accepted for stability analysis of FTCS; however, the design of a controller only accessing the FDI mode is still a challenging problem. We solve this synthesis problem by using convex optimisation techniques. First, a sufficient condition for the mean exponential stability is given in terms of a linear matrix inequality (LMI). The results are then extended to uncertain systems design for stability and in system performance using a stochastic integral quadratic constraint. Due to the complexity of the problem, the controller is obtained using the iterative LMI technique.

References

    1. 1)
      • J.B.R. Val do , J. Geromel , A.P.C. Goncalves . The H2-control for jump linear systems: cluster observations of the Markov state. Automatica , 2 , 343 - 349
    2. 2)
      • C.Y. Huang , R.F. Stengel . Reconfigurable control using proportional-integral implicit model following. J. Guidance, Control Dyn. , 2 , 303 - 309
    3. 3)
      • J. Jiang . Design of reconfigurable control systems using eigenstructure assignment. Int. J. Control , 2 , 395 - 410
    4. 4)
    5. 5)
      • B.R. Barmish . Necessary and sufficient conditions for quadratic stabilizability of an uncertain system. J. Opt. Theory Appl. , 399 - 408
    6. 6)
      • M.M. Mahmoud , J. Jiang , Y.M. Zhang . (2003) Active fault tolerant control systems: stochastic analysis and synthesis.
    7. 7)
      • M. Mariton . Detection delays, false alarm rates and reconfiguration of control systems. Int. J. Control , 981 - 992
    8. 8)
    9. 9)
      • Goh, K.C., Turan, L., Safonov, M.G., Papavassilopoulous, G.P.: `A global optimisation approach for the BMI problem', Proc. of IEEE Conference on Decision and Control, Dec 1994, p. 2009–2014.
    10. 10)
    11. 11)
    12. 12)
      • Goh, K.C., Turan, L., Safonov, M.G., Papavassilopoulous, G.P., Ly, J.H.: `Biaffine matrix inequality properties and computational methods', Proc. American Control Conference, 1994, p. 850–855.
    13. 13)
      • R.J. Patton . (1999) Fault tolerant control: the 1997 situation, Proc. IFAC SAFEPROCESS'97.
    14. 14)
      • F. Tao , Q. Zhao . Design of stochastic fault tolerant control for optimal H2 performance. Int. J. Robust Nonlinear Control , 1 , 1 - 24
    15. 15)
      • P. Shi , E.K. Boukas . H∞ control for Markovian jumping linear systems with parametric uncertainty. J. Optim. Appl. , 75 - 99
    16. 16)
    17. 17)
      • E.K. Boukas . Stabilization of stochastic nonlinear hybrid systems. Int. J. Innovative Comput. Inf. Control , 1 , 131 - 141
    18. 18)
    19. 19)
      • M.M. Mahmoud , J. Jiang , Y.M. Zhang . Stabilization of active fault tolerant control systems with imperfect fault detection and diagnosis. Stochastic Anal. Appl. , 3 , 673 - 701
    20. 20)
      • L.E. Ghaoui , M.A. Rami . Robust state-feedback stabilization of jump linear systems via LMIs. Int. J. Robust Nonlinear Control , 1015 - 1022
    21. 21)
    22. 22)
      • S.K. Mudge , R.J. Patton . Analysis of the techniques of robust eigenstructure assignment with application to aircraft control. IEE Proc., Control Theory Appl. , 275 - 281
    23. 23)
      • Cheng, C., Zhao, Q., Tao, F.: `Stability and performance of the stochastic fault tolerant control systems', Proc. IEEE Conference on Decision and Control, Dec 2003, Maui, Hawaii, p. 2484–2489.
    24. 24)
    25. 25)
      • F.N. Chowdhury , B. Jiang , C.M. Belcastro . Reduction of false alarms in fault detection problems. Int. J. Innovative Comput. Inf. Control , 3 , 481 - 490
    26. 26)
      • M.M. Mahmoud , J. Jiang , Y.M. Zhang . Stochastic stability analysis of fault tolerant control systems in the present of noise. IEEE Trans. Autom. Control , 11 , 1810 - 1815
    27. 27)
      • C. Cheng , Q. Zhao , F. Tao . Analysis of the stability and performance of the integrated fault tolerant control systems. Dyn. Contin. Discrete Impuls. Syst., Ser. B Appl. Algorithms , 123 - 140
    28. 28)
    29. 29)
      • R. Srichander , B.K. Walker . Stochastic stability analysis for continuous-time fault tolerant control systems. Int. J. Control , 2 , 433 - 452
    30. 30)
    31. 31)
    32. 32)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta_20050492
Loading

Related content

content/journals/10.1049/iet-cta_20050492
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address