Your browser does not support JavaScript!

Distributed estimation, communication and control for deep space formations

Distributed estimation, communication and control for deep space formations

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Spacecraft formations in deep space give a means of implementing science instruments on a physical scale not possible with an individual spacecraft. Interferometric imaging is one application requiring a large spacecraft separation and extremely high relative position precision in order to image planets in other solar systems. Deep-space missions typically also require a high-level of autonomy, and the proposed distributed architectures for control and coordination, that are consistent with these requirements. Each spacecraft estimates the full state of the formation in order to calculate its optimal control action. Disagreements between estimates on the spacecraft lead to unanticipated dynamics and it is shown how communication may be used to ameliorate the effect of these dynamics. The relationship between the communication topology and the closed-loop system dynamics is presented.

Related content

This is a required field
Please enter a valid email address