Distributed estimation, communication and control for deep space formations

Access Full Text

Distributed estimation, communication and control for deep space formations

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Spacecraft formations in deep space give a means of implementing science instruments on a physical scale not possible with an individual spacecraft. Interferometric imaging is one application requiring a large spacecraft separation and extremely high relative position precision in order to image planets in other solar systems. Deep-space missions typically also require a high-level of autonomy, and the proposed distributed architectures for control and coordination, that are consistent with these requirements. Each spacecraft estimates the full state of the formation in order to calculate its optimal control action. Disagreements between estimates on the spacecraft lead to unanticipated dynamics and it is shown how communication may be used to ameliorate the effect of these dynamics. The relationship between the communication topology and the closed-loop system dynamics is presented.

Inspec keywords: robot dynamics; mobile robots; aerospace robotics; aerospace control; space vehicles; optimal control; position control; closed loop systems; multi-robot systems

Other keywords: deep space formations; distributed estimation; spacecraft formations; optimal control action; autonomy; position precision; closed-loop system dynamics; unanticipated dynamics; interferometric imaging; planets; distributed control; solar systems; distributed communication

Subjects: Optimal control; Aerospace control; Robot and manipulator mechanics; Spatial variables control; Mobile robots

References

    1. 1)
    2. 2)
      • Robertson, A., Ìnalhan, G., How, J.P.: `Formation control strategies for a separated spacecraft interferometer', Proc. Amer. Control Conf., 1999, 6, p. 4142–4146.
    3. 3)
    4. 4)
      • Lawson, P.R.: `The terrestrial planet finder', Proc. IEEE Aerospace Conf., March 2001, 4, p. 2005–2011.
    5. 5)
      • Smith, R.S., Hadaegh, F.Y.: `A distributed parallel estimation architecture for cooperative vehicle formation control', Proc. Amer. Control Conf., 2006, in press.
    6. 6)
    7. 7)
      • Olfati-Saber, R., Murray, R.: `Graph rigidity and distributed formation stabilization of multiple-vehicle systems', Proc. IEEE Control Decision Conf., 2002, 3, p. 2965–2971.
    8. 8)
      • Sholomitsky, G., Prilutsky, O., Rodin, V.: `Infra-red space interferometer', IAF-77‐68, 28thInt. Astro. Fed. Congress, 1977.
    9. 9)
      • R. Stachnik , A. Labeyrie . Astronomy from satellite clusters. Sky Telesc. , 205 - 209
    10. 10)
      • Stachnik, R., Melroy, P., Arnold, D., McCormack, E., Gezari, D.: `Multiple spacecraft Michelson stellar interferometer', Instrumentation in Astronomy, V, Proc. SPIE, 1984, p. 358–369, 445.
    11. 11)
      • Liu, X., Goldsmith, A., Mahal, S., Hedrick, J.: `Effects of communication delay on string stability of vehicle platoons', Proc. IEEE Intell. Transport. Syst., 2000, p. 625–630.
    12. 12)
      • Kapila, V., Sparks, A.G., Buffington, J.M., Yan, Q.: `Spacecraft formation flying: Dynamics and control', Proc. Amer. Control Conf., 1999, 6, p. 4137–4141.
    13. 13)
      • Ferguson, P., How, J.: `Decentralized estimation algorithms for formation flying spacecraft', AIAA Guidance, Navigation and Cont. Conf., 2003, p. 2003–5442.
    14. 14)
      • P.K.C. Wang , J. Yee , F.Y. Hadaegh . Synchronized rotation of multiple autonomous spacecraft with rule-based controls: experimental study. AIAA J. Guid. Control Dyn. , 352 - 359
    15. 15)
      • Arambel, P.O., Rago, C., Mehra, R.K.: `Covariance intersection algorithm for distributed spacecraft state estimation', Proc. Amer. Control Conf., 2001, 6, p. 4398–4403.
    16. 16)
      • R.S. Smith , F.Y. Hadaegh . Control of deep space formation flying spacecraft; relative sensing and switched information. AIAA J. Guid. Control Dyn. , 1 , 106 - 114
    17. 17)
    18. 18)
      • Bauer, F., Bristow, J., Folta, D., Hartman, K., Quinn, D., How, J.: `Satellite formation flying using an innovative autonomous control system (AutoCon) environment', AIAA Guidance, Navigation and Cont. Conf., 1997, p. 657–666.
    19. 19)
      • Hadaegh, F.Y., Kang, B.H., Scharf, D.P.: `Rule-based estimation and control of formation flying spacecraft', IEEE Conf. Fuzzy Syst., December 2001, 3, p. 1331–1336.
    20. 20)
      • Carpenter, J.R.: `A preliminary investigation of decentralized control for satellite formations', Proc. IEEE Aerospace Conf., 2000, 7, p. 63–74.
    21. 21)
      • C.V.M. Fridlund . Darwin – the infrared space interferometry mission. ESA Bull. , 20 - 25
    22. 22)
      • M. Mesbahi , F.Y. Hadaegh . Formation flying of multiple spacecraft via graphs, matrix inequalities, and switching. AIAA J. Guid., Control Dyn. , 369 - 377
    23. 23)
      • Hadaegh, F.Y., Lu, W.-M., Wang, P.K.C.: `Adaptive control of formation flying spacecraft for interferometry', Proc. 8th IFAC/IFORS/IMACS/IFIP Symp. on Large Scale Systems: Theory and Appl., 1998, 1, Elsevier Science, UK, p. 117–122.
    24. 24)
      • Stansbery, D., Cloutier, J.R.: `Nonlinear control of satellite formation flight', AIAA Guidance, Navigation and Cont. Conf., August 2000, AIAA paper 2000-4436.
    25. 25)
      • P.K.C. Wang , F.Y. Hadaegh . Coordination and control of multiple microspacecraft moving in formation. J. Astronaut. Sci. , 3 , 315 - 355
    26. 26)
      • G.B. Blackwood , S. Dubovitsky , R.P. Linfield , P.W. Gorham . Interferometer instrument design for New Millenium Deep Space 3. Proc. SPIE
    27. 27)
      • Lau, K., Lichten, S., Young, L., Haines, B.: `An innovative deep space application of GPS technology for formation flying spacecraft', AIAA Guidance, Navigation and Cont. Conf., July 1996, AIAA paper 96-3819.
    28. 28)
      • R.S. Smith , F.Y. Hadaegh . Closed-loop dynamics of cooperative vehicle formations with parallel estimators and communication. IEEE Trans. Auto. Control
    29. 29)
      • Fax, J., Murray, R.: `Information flow and cooperative control of vehicle formations', Proc. 15th IFAC World Congress, 2002.
    30. 30)
      • Tillerson, M., Breger, L., How, J.P.: `Distributed coordination and control of formation flying spacecraft', Proc. Amer. Control Conf., 2003, 2, p. 1740–1745.
    31. 31)
      • M.R. Jovanović , B. Bamieh . On the ill-posedness of certain vehicular platoon control problems. IEEE Trans. Autom. Control , 9 , 1307 - 1321
    32. 32)
    33. 33)
      • A.B. DeCou . Attitude and tether vibration control in spinning tethered triangles for orbiting interferometry. J. Astronaut. Sci , 3 , 373 - 398
    34. 34)
      • Gorham, P.W., Folkner, W.M., Blackwood, G.B.: `Enabling concepts for a dual spacecraft formation-flying optical interferometer for NASA's ST3 mission', Working on the Fringe, Proc. 1999 Dana Pt. Conf. on Optical Interferometry, PASP conf. series, December 1999, 194, p. 395–400.
    35. 35)
    36. 36)
      • K. Danzmann . (1998) LISA: Laser interferometer space antenna for the detection and observation of gravitational waves.
    37. 37)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta_20050460
Loading

Related content

content/journals/10.1049/iet-cta_20050460
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading