© The Institution of Engineering and Technology
A formulation of stability for formation flying spacecraft is presented. First, a formation is defined via control interactions between the spacecraft. Then, stability is formulated on the basis of inputtooutput stability with respect to a partitioning of the formation dynamics. The particular form of inputtooutput stability used here is based on the peaktopeak gain of a system from its input to its output. This formulation of stability is shown to be useful in characterising disturbance propagation in the formation as a function of the partition interconnection topology, and also in analysing the robustness of sensing, communication and control topologies. Stability analysis results are presented for hierarchical, cyclic and disturbance attenuating formations in terms of the inputtooutput gains of the partitions in the formation. Finally, Lyapunov stability analysis results are provided in terms of linear matrix inequalities for a general class of formations.
References


1)

C.W. Scherer
.
LPV control and full block multipliers.
Automatica
,
361 
375

2)

Lawson, P.R.: `The terrestrial planet finder', Proc. IEEE Aerospace Conf., 2001, 101, p. 2005–2011.

3)

A.B. Açikmeşe ,
M. Corless
.
Robust tracking and disturbance rejection of bounded rate signals for uncertain/nonlinear systems.
Int. J. Control
,
11 ,
1129 
1141

4)

H.K. Khalil
.
(1988)
Nonlinear systems.

5)

Scharf, D.P., Hadaegh, F.Y., Ploen, S.R.: `A survey of spacecraft formation flying guidance and control (Part II): control', Proc. 2004 American Control Conf., June 2004, 4, p. 2976–2985.

6)

E.D. Sontag ,
Y. Wang
.
Notions of input to output stability.
Syst. Control Lett.
,
235 
248

7)

Tanner, H.G., Pappas, G.J., Kumar, V.: `Inputtostate stability on formation graphs', Proc. 41st IEEE Conf. on Decision and Control, 2002, 3, p. 2439–2444.

8)

A. Pant ,
P. Seiler ,
J.K. Hedrick
.
Mesh stability of lookahead interconnected systems.
IEEE Trans. Autom. Control
,
2 ,
403 
407

9)

A. Rantzer
.
On the Kalman–Yakubovic–Popov lemma.
Syst. Control Lett.
,
7 
10

10)

N. Deo
.
(1974)
Graph theory with applications to engineering and computer science.

11)

J.C. Willems
.
Dissipative dynamical systems I–II.
Arch. Ration. Mech. Anal.
,
321 
393

12)

H.G. Tanner ,
G.J. Pappas ,
V. Kumar
.
Leadertoformation stability.
IEEE Trans Robot. Autom.
,
3 ,
443 
455

13)

D.D. Šiljak
.
(1991)
Decentralized control of complex systems.

14)

W. Tang ,
A.N. Michel ,
H.W. Hale
.
On structure of interconnected dynamical systems.
IEEE Trans. Autom. Control
,
5 ,
391 
405

15)

E. Sontag ,
Y. Wang
.
New characterisations of the inputtostate stability property.
IEEE Trans. Autom. Control
,
1283 
1294

16)

P.K.C. Wang ,
F.Y. Hadaegh
.
Coordination and control of multiple microspacecraft moving in formation.
J. Astronaut. Sci.
,
3 ,
315 
355

17)

A.N. Michel
.
On the status of stability of interconnected systems.
IEEE Trans. Autom. Control
,
6 ,
325 
340

18)

Sontag, E., Wang, Y.: `A notion of input to output stability', Proc. European Control Conf., July 1997, Brussels.

19)

A. Isidori
.
(1999)
Nonlinear control systems II.

20)

S. Boyd ,
L.E. Ghaoui ,
E. Feron ,
V. Balakrishnan
.
(1994)
Linear matrix inequalities in system and control theory.

21)

W.H. Clohessy ,
R.S. Wiltshire
.
Terminal guidance system for satellite rendezvous.
J. Aerosp. Sci.
,
9 ,
653 
658

22)

J.F. Sturm
.
Using SeDuMi 1.02, a matlab toolbox for optimization over symmetric cones.
Optim. Methods Softw.
,
6 ,
1105 
1154

23)

R.A. Horn ,
C.R. Johnson
.
(1991)
Topics in matrix analysis.

24)

T. Iwasaki ,
G. Shibata
.
LPV system analysis via quadratic seperator for uncertain implicit systems.
IEEE Trans. Autom. Control
,
1195 
1208

25)

E. Sontag ,
Y. Wang
.
Lyapunov characterizations of input to output stability.
SIAM J. Control Optim.
,
226 
249

26)

M.L. Brockman ,
M. Corless
.
Quadratic boundedness of nominally linear systems.
Int. J. Control
,
6 ,
1105 
1117

27)

C. Langbort ,
R.S. Chandra ,
R. D'Andrea
.
Distributed control design for systems interconnected over an arbitrary graph.
IEEE Trans. Autom. Control
,
9 ,
1502 
1519
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcta_20050459
Related content
content/journals/10.1049/ietcta_20050459
pub_keyword,iet_inspecKeyword,pub_concept
6
6