http://iet.metastore.ingenta.com
1887

Load-sharing robust control of spacecraft formations: deep space and low Earth elliptic orbits

Load-sharing robust control of spacecraft formations: deep space and low Earth elliptic orbits

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The design of autonomous and collaborative control strategies to govern the relative distances among multiple spacecraft in formation with no ground intervention is discussed. A coordinated load-sharing control structure for formation flying and a robust methodology to control spacecraft formations under slow time-varying and uncertain parameters are the main objectives. The method shares the load according to frequency specifications and takes into account the uncertainty and the multi-input–multi-output characteristic of the system. The methodology is applied to control spacecraft in formations in both deep space and low Earth elliptic orbits.

References

    1. 1)
      • K. Lau , M. Colavita , M. Shao . (1997) The new millennium separated spacecraft interferometer, Space Technology and Applications Int. Forum (STAIF-97).
    2. 2)
      • R.V. Stachnik , K. Ashlin , S. Hamilton . Space-station – SAMSI: a spacecraft array for Michelson special interferometry. Bull. Am. Astron. Soc. , 3 , 818 - 827
    3. 3)
      • Stachnik, R.V., Melroy, P., McCormack, E.F., Arnold, D., Gezari, D.Y.: `Multiple spacecraft Michelson stellar interferometry', Proc. SPIE Instrumentation in Astronomy V, 1984, 445, p. 358–369.
    4. 4)
      • DeCue, A.B.: `Multiple spacecraft optical interferometry preliminary feasibility assessment', D-8811, JPL Technical Internal Report, August 1991.
    5. 5)
      • P.K.C. Wang , F.Y. Hadaegh . Coordination and control of multiple microspacecraft moving in formation. J. Astron. Sci. , 3 , 315 - 355
    6. 6)
      • P.K.C. Wang , F.Y. Hadaegh , K. Lau . Synchronized formation rotation and attitude control of multiple free-flying spacecraft. J. Guid. Control Dyn. , 1 , 28 - 35
    7. 7)
      • Scharf, D.P., Hadaegh, F.Y., Ploen, S.R.: `A survey of spacecraft formation flying guidance and control (part I): Guidance', American Control Conf., June 2003, Denver.
    8. 8)
      • Scharf, D.P., Hadaegh, F.Y., Ploen, S.R.: `A survey of spacecraft formation flying guidance and control (part II): Control', American Control Conf., June 2003, Denver.
    9. 9)
      • Li, S., Mehra, R., Smith, R., Beard, R.: `Multi-spacecraft trajectory optimization and control using genetic algorithm techniques', Proc. IEEE Aerospace Conf., March 2000, Big Sky, MT, p. 99–108.
    10. 10)
    11. 11)
    12. 12)
      • C. Sabol , R. Burns , C.A. McLaughlin . Satellite formation flying design and evolution. J. Spacecr. Rockets , 2 , 270 - 278
    13. 13)
      • Hadaegh, F.Y., Scharf, D.P., Ploen, S.R.: `Initialization of distributed spacecraft for precision formation flying', IEEE Conf. on Control Applications, June 2003, Istanbul, Turkey.
    14. 14)
    15. 15)
      • M. Campbell . Planning algorithm for multiple satellite clusters. J. Guid. Control and Dyn. , 5 , 770 - 780
    16. 16)
      • Zanon, D., Campbell, M.: `Optimal planning for tetrahedral formations near elliptic orbits', AIAA Guidance Navigation and Control Conf., August 2004, Providence, Rhode Island, p. 16–19.
    17. 17)
      • Singh, G., Hadaegh, F.Y.: `Collision avoidance guidance for formation flying applications', AIAA Guidance, Navigation and Control Conf., October 2001, Montreal, Canada.
    18. 18)
      • F.Y. Hadaegh , G. Singh , M. Quadrelli , J. Shields . (2000) Modelling and control of formation flying spacecraft in deep space and Earth orbits, Workshop on Terrestrial Planet Finder, JPL.
    19. 19)
      • Ploen, S.R., Scharf, D.P., Hadaegh, F.Y., Acikmese, A.B.: `Dynamics of Earth orbiting formations', AIAA Guidance, Navigation and Control Conf, 2004, RI.
    20. 20)
      • E. Eitelberg . (1999) Load sharing control.
    21. 21)
      • I. Horowitz . (1993) Quantitative feedback design theory (QFT).
    22. 22)
      • C.H. Houpis , S.J. Rasmussen , M. Garcia-Sanz . (2006) Quantitative feedback theory: fundamentals and applications ‘CRC Press book’.
    23. 23)
      • W.H. Clohessy , R.S. Wiltshire . Terminal guidance system for satellite rendezvous. J. Aerosp. Sci. , 9 , 653 - 658, 674
    24. 24)
      • F.G. Shinskey . (1988) Process control synthesis.
    25. 25)
      • K.J. Åström , B. Wittenmark . (1984) Computer-controlled systems. Theory and design.
    26. 26)
      • M. Garcia-Sanz , I. Egana . Quantitative non-diagonal controller design for multivariable systems with uncertainty. Int. J. Robust Nonlinear Control , 321 - 333
    27. 27)
      • M. Garcia-Sanz , I. Egana , M. Barreras . Design of QFT non-diagonal controllers for reference tracking and external disturbances rejection in uncertain MIMO systems. IEE Control Theory Appl. , 177 - 187
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta_20050395
Loading

Related content

content/journals/10.1049/iet-cta_20050395
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address