access icon free Static output feedback sliding mode control under rice fading channel: an interval type-2 fuzzy modelling method

This work investigates the static output feedback sliding mode control (SMC) design problem of uncertain non-linear systems with Rice fading channels. The interval type-2 Takagi-Sugeno fuzzy modelling approach is exploited to express non-linear dynamics with uncertain parameters. As the wireless network between the sensor and the controller may be subject to channel fading, the premise variables are probably altered during their propagations. In such cases, a key issue is to synthesise a desired SMC law for stabilising the controlled non-linear systems. To this end, new membership functions are constructed via employing the fading measurements and the desired SMC law are subsequently synthesised. To deal with the disturbances in communication channels, the notion of input-to-state stable in probability (ISSiP) is utilised and sufficient criteria are deduced to guarantee the ISSiP of the resultant closed-loop systems and the reachability of the prescribed sliding surface. Finally, a simulation example illustrates the designed control strategy.

Inspec keywords: stability; uncertain systems; fuzzy set theory; fuzzy systems; variable structure systems; nonlinear control systems; feedback; discrete time systems; fuzzy control; closed loop systems; Lyapunov methods; linear systems; control system synthesis

Other keywords: rice fading channel; communication channels; fading measurements; nonlinear dynamics; Rice fading channels; static output feedback; desired SMC law; interval type-2 fuzzy modelling method; interval type-2 Takagi-Sugeno fuzzy modelling approach; resultant closed-loop systems; nonlinear systems; prescribed sliding surface; uncertain parameters; mode control design problem

Subjects: Linear control systems; Multivariable control systems; Combinatorial mathematics; Algebra; Combinatorial mathematics; Stability in control theory; Nonlinear control systems; Discrete control systems; Optimal control; Control system analysis and synthesis methods; Time-varying control systems; Fuzzy control

References

    1. 1)
      • 8. Zhang, S., Wang, Z., Ding, D., et al: ‘Nonfragile H fuzzy filtering with randomly occurring gain variations and channel fadings’, IEEE Trans. Fuzzy Syst., 2016, 24, (3), pp. 505518.
    2. 2)
      • 14. Du, P., Pan, Y., Li, H., et al: ‘Nonsingular finite-time event-triggered fuzzy control for large-scale nonlinear systems’, IEEE Trans. Fuzzy Syst., doi: 10.1109/TFUZZ.2020.2992632.
    3. 3)
      • 45. Sklar, B.: ‘Rayleigh fading channels in mobile digital communication systems .I. characterization’, IEEE Commun. Mag., 1997, 35, (7), pp. 90100.
    4. 4)
      • 1. Zhang, S., Wang, Z., Ding, D., et al: ‘A gain-scheduling approach to nonfragile H fuzzy control subject to fading channels’, IEEE Trans. Fuzzy Syst., 2018, 26, (1), pp. 142154.
    5. 5)
      • 28. Zhao, H., Niu, Y., Zhao, J.: ‘Event-triggered sliding mode control of uncertain switched systems under denial-of-service attacks’, J. Frankl. Inst., 2019, 356, (18), pp. 1141411433.
    6. 6)
      • 10. Cao, Z., Niu, Y., Lam, H.K., et al: ‘Sliding mode control of Markovian jump fuzzy systems: a dynamic event-triggered method’, IEEE Trans. Fuzzy Syst., doi: 10.1109/TFUZZ.2020.3009729.
    7. 7)
      • 17. Vadivel, R., Joo, Y.H.: ‘Finite-time sampled-data fuzzy control for a non-linear system using passivity and passification approaches and its application’, IET Control Theory Appl., 2020, 14, (8), pp. 10331045.
    8. 8)
      • 16. Zhang, K., Jiang, B., Shi, P., et al: ‘Analysis and design of robust H fault estimation observer with finite-frequency specifications for discrete-time fuzzy systems’, IEEE Trans. Cyber., 2015, 45, (7), pp. 12251235.
    9. 9)
      • 3. Xiao, N., Niu, Y., Xie, L.: ‘State feedback stabilization over finite-state fading channels’, Asian J. Control, 2016, 18, (3), pp. 10521061.
    10. 10)
      • 27. Song, J., Niu, Y.: ‘Dynamic event-triggered sliding mode control: dealing with slow sampling singularly perturbed systems’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2020, 67, (6), pp. 10791083.
    11. 11)
      • 22. Xiao, B., Lam, H.K., Li, H.: ‘Stabilization of interval type-2 polynomial-fuzzy-model-based control systems’, IEEE Trans. Fuzzy Syst., 2017, 25, (1), pp. 205217.
    12. 12)
      • 33. Xu, J., Fridman, E., Fridman, L.M., et al: ‘Static sliding mode control of systems with arbitrary relative degree by using artificial delays’, IEEE Trans. Autom. Control, 2020, 65, (12), pp. 54645471.
    13. 13)
      • 39. Sala, A., Arino, C.: ‘Relaxed stability and performance conditions for takagi-sugeno fuzzy systems with knowledge on membership function overlap’, IEEE Trans. Syst., Man, Cybern. B, Cybern., 2007, 37, (3), pp. 727732.
    14. 14)
      • 2. Su, L., Chesi, G.: ‘On the design of output feedback controllers for LTI systems over fading channels’, IEEE Trans. Autom. Control, 2018, 63, (5), pp. 15031508.
    15. 15)
      • 6. Zhao, D., Wang, Z., Ding, D., et al: ‘H PID control with fading measurements: the output-feedback case’, IEEE Trans. Syst., Man, Cybern., Syst., 2020, 50, (6), pp. 21702180.
    16. 16)
      • 23. Xiao, B., Lam, H., Zhou, H., et al: ‘Analysis and design of interval type-2 polynomial-fuzzy-Model-Based networked tracking control systems’, IEEE Trans. Fuzzy Syst., doi: 10.1109/TFUZZ.2020.3006587.
    17. 17)
      • 11. Gunasekaran, N., Joo, Y.H.: ‘Stochastic sampled-data controller for T-S fuzzy chaotic systems and its applications’, IET Control Theory Appl., 2019, 13, (12), pp. 18341843.
    18. 18)
      • 21. Xiao, B., Lam, H.K., Yu, Y., et al: ‘Sampled-data output-feedback tracking control for interval type-2 polynomial fuzzy systems’, IEEE Trans. Fuzzy Syst., 2020, 28, (3), pp. 424433.
    19. 19)
      • 18. Ji, W., Qiu, J., Lam, H.K.: ‘A new design of output feedback sliding mode controller for T-S fuzzy-affine systems’, Asian J. Control, doi:10.1002/asjc.2323.
    20. 20)
      • 7. Zhang, Y., Wang, Z., Zou, L., et al: ‘Event-based finite-time filtering for multirate systems with fading measurements’, IEEE Trans. Aerosp. Electron. Syst., 2017, 53, (3), pp. 14311441.
    21. 21)
      • 25. Lam, H.K., Seneviratne, L.D.: ‘Stability analysis of interval type-2 fuzzy-model-based control systems’, IEEE Trans. Syst., Man, Cybern., Cybern., 2008, 38, (3), pp. 617628.
    22. 22)
      • 29. Zhao, H., Niu, Y., Jia, T.: ‘Security control of cyber-physical switched systems under round-robin protocol: input-to-state stability in probability’, Inf. Sci., 2020, 508, pp. 121134.
    23. 23)
      • 13. Pan, Y., Du, P., Xue, H., et al: ‘Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance’, IEEE Trans. Fuzzy Syst., doi: 10.1109/TFUZZ.2020.2999746.
    24. 24)
      • 42. Lam, H.K., Liu, C., Wu, L., et al: ‘Polynomial fuzzy-model-based control systems: stability analysis via approximated membership functions considering sector nonlinearity of control input’, IEEE Trans. Fuzzy Syst., 2015, 23, (6), pp. 22022214.
    25. 25)
      • 43. Qiu, J., Feng, G., Gao, H.: ‘Fuzzy-model-based piecewise H static-output-feedback controller design for networked nonlinear systems’, IEEE Trans. Fuzzy Syst., 2010, 18, (5), pp. 919934.
    26. 26)
      • 24. Zhang, Z., Niu, Y., Song, J.: ‘Input-to-state stabilization of interval type-2 fuzzy systems subject to cyber attacks: an observer-based adaptive sliding mode approach’, IEEE Trans. Fuzzy Syst., 2020, 28, (1), pp. 190203.
    27. 27)
      • 19. Song, J., Niu, Y., Lam, J., et al: ‘Fuzzy remote tracking control for randomly varying local nonlinear models under fading and missing measurements’, IEEE Trans. Fuzzy Syst., 2018, 26, (3), pp. 11251137.
    28. 28)
      • 40. Lam, H.K., Narimani, M.: ‘Quadratic-stability analysis of fuzzy-model-based control systems using staircase membership functions’, IEEE Trans. Fuzzy Syst., 2010, 18, (1), pp. 125137.
    29. 29)
      • 9. Chen, Y., Wang, Z., Yuan, Y., et al: ‘Distributed H filtering for switched stochastic delayed systems over sensor networks with fading measurements’, IEEE Trans. Cybern., 2020, 50, (1), pp. 214.
    30. 30)
      • 44. Tang, X., Deng, L., Yu, J., et al: ‘Output feedback predictive control of interval type-2 T-S fuzzy systems with Markovian packet loss’, IEEE Trans. Fuzzy Syst., 2018, 26, (4), pp. 24502459.
    31. 31)
      • 34. Li, J., Niu, Y.: ‘Sliding mode control subject to rice channel fading’, IET Control Theory Appl., 2019, 13, (16), pp. 25292537.
    32. 32)
      • 15. Wu, Y., Pan, Y., Chen, M., et al: ‘Quantized adaptive finite-time bipartite NN tracking control for stochastic multiagent systems’, IEEE Trans. Cybern., doi: 10.1109/TCYB.2020.3008020.
    33. 33)
      • 5. Song, J., Niu, Y., Wang, S.: ‘Robust finite-time dissipative control subject to randomly occurring uncertainties and stochastic fading measurements’, J. Frankl. Inst., 2017, 354, (9), pp. 37063723.
    34. 34)
      • 12. Vinodkumar, A., Prakash, M., Joo, Y.H.: ‘Impulsive observer-based output control for PMSG-based wind energy conversion system’, IET Control Theory Appl., 2019, 13, (13), pp. 20562064.
    35. 35)
      • 31. Cao, Z., Niu, Y., Song, J.: ‘Finite-time sliding mode control of Markovian jump cyber-physical systems against randomly occurring injection attacks’, IEEE Trans. Autom. Control, 2020, 65, (3), pp. 12641271.
    36. 36)
      • 38. Narimani, M., Lam, H.K.: ‘Relaxed LMI-based stability conditions for takagi-sugeno fuzzy control systems using regional-membership-function-shape-dependent analysis approach’, IEEE Trans. Fuzzy Syst., 2009, 17, (5), pp. 12211228.
    37. 37)
      • 32. Wang, J., Zhang, L., Chen, M.Z.Q., et al: ‘Hyperplane design for discrete-time sliding mode control with event-trigger strategy and disturbance observer’, IET Control Theory Appl., 2020, 14, (8), pp. 10031011.
    38. 38)
      • 36. Zhang, Z., Su, S., Niu, Y.: ‘Dynamic event-triggered control for interval type-2 fuzzy systems under fading channel’, IEEE Trans. Cybern., doi: 10.1109/TCYB.2020.2996296.
    39. 39)
      • 20. Lam, H.K., Li, H., Deters, C., et al: ‘Control design for interval type-2 fuzzy systems under imperfect premise matching’, IEEE Trans. Ind. Electron., 2014, 61, (2), pp. 956968.
    40. 40)
      • 41. Lam, H.K.: ‘Polynomial fuzzy-model-based control systems: stability analysis via piecewise-linear membership functions’, IEEE Trans. Fuzzy Syst., 2011, 19, (3), pp. 588593.
    41. 41)
      • 37. Sheng, L., Wang, Z., Wang, W., et al: ‘Output-feedback control for nonlinear stochastic systems with successive packet dropouts and uniform quantization effects’, IEEE Trans. Syst., Man, Cybern., Syst., 2017, 47, (7), pp. 11811191.
    42. 42)
      • 30. Cao, Z., Niu, Y., Zou, Y.: ‘Adaptive neural sliding mode control or singular semi-markovian jump systems against actuator attacks’, IEEE Trans. Syst., Man, Cybern., Syst., doi: 10.1109/TSMC.2019.2898428.
    43. 43)
      • 26. Xiao, B., Lam, H.K., Zhong, Z., et al: ‘Membership-function-dependent stabilization of event-triggered interval type-2 polynomial fuzzy-model-based networked control systems’, IEEE Trans. Fuzzy Syst., 2020, 28, (12), pp. 31713180.
    44. 44)
      • 35. Tanaka, K., Wang, H.O.: ‘Fuzzy control systems design and analysis: a linear matrix inequality approach’ (Wiley, New York, 2001).
    45. 45)
      • 4. Chen, W., Zou, Y., Xiao, N., et al: ‘Quantised feedback stabilisation of LTI systems over partly unknown markov fading channels’, Int. J. Syst. Sci., 2017, 48, (10), pp. 21282136.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2020.0878
Loading

Related content

content/journals/10.1049/iet-cta.2020.0878
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading