access icon free Robust event-triggered T–S fuzzy system with successive time-delay signals and its application

This study is relevant to the topic of a robust event-triggered mechanism for the Takagi–Sugeno (T–S) fuzzy system with successive time-delay (STD) signals and its application, where the uncertainties satisfy the randomly occurring form. Firstly, an event-triggered communication scheme is introduced, which can adaptively adjust the communication threshold to save limited communication resource. The primary aim of this study is to model an event-triggered mechanism with STD, which ensures that the suggested T–S fuzzy system achieves extended dissipative with permissible uncertainties. Secondly, by using the relaxed integral inequality technique, single and double auxillary function-based integral inequalities to evaluate the derivative of the designed Lyapunov–Krasovskii functional, quadratically stable condition is established for the delayed fuzzy system in terms of linear matrix inequalities and analyse the , passivity, mixed and passivity, -dissipativity execution by choosing the weighting matrices can be solved simultaneously in a standard framework based on the idea of extended dissipative. Finally, simulation studies are given to verify the effectiveness of the derived results, among them one example was supported by the real-life application of the benchmark problem in the sense of STD signals.

Inspec keywords: nonlinear control systems; time-varying systems; delay systems; uncertain systems; fuzzy control; robust control; fuzzy systems; control system synthesis; telecommunication control; Lyapunov methods; linear matrix inequalities; delays

Other keywords: real-life application; double auxillary function-based integral inequalities; robust event-triggered T–S fuzzy system; randomly occurring form; designed Lyapunov–Krasovskii functional; single auxillary function-based integral inequalities; communication threshold; event-triggered communication scheme; Takagi–Sugeno fuzzy system; linear matrix inequalities; STD signals; successive time-delay signals; relaxed integral inequality technique; robust event-triggered mechanism; permissible uncertainties; extended dissipative; delayed fuzzy system; communication resource

Subjects: Time-varying control systems; Distributed parameter control systems; Signal processing and detection; Signal processing theory; Algebra; Fuzzy control; Communication system theory; Control applications in data transmission; Control system analysis and synthesis methods; Stability in control theory; Nonlinear control systems; Algebra

References

    1. 1)
      • 28. Wu, Y., Jiang, B., Wang, Y.: ‘Incipient winding fault detection and diagnosis for squirrel-cage induction motors equipped on CRH trains’, ISA Trans., 2020, 99, pp. 488495.
    2. 2)
      • 40. Li, M., Zhao, J., Xia, J., et al: ‘Extended dissipative analysis and synthesis for network control systems with an event-triggered scheme’, Neurocomputing, 2018, 312, pp. 3440.
    3. 3)
      • 42. Wang, J., Xing, M., Sun, Y., et al: ‘Event-triggered dissipative state estimation for markov jump neural networks with random uncertainties’, J. Franklin Inst., 2019, 356, (17), pp. 1015510178.
    4. 4)
      • 10. Xiong, L., Yang, F., Chen, X.: ‘New stabilization for dynamical system with two additive time-varying delays’, Sci. World J., 2014, Article ID 315817, 8 pages.
    5. 5)
      • 26. Zeng, D., Wu, K.T., Liu, Y., et al: ‘Event-triggered sampling control for exponential synchronization of chaotic lur'e systems with time-varying communication delays’, Nonlinear Dyn., 2018, 91, (2), pp. 905921.
    6. 6)
      • 38. Wei, H., Ruoxia, L., Chunrong, C., et al: ‘Extended dissipative analysis for memristive neural networks with two additive time-varying delay components’, Neurocomputing, 2016, 216, pp. 429438.
    7. 7)
      • 6. Peng, C., Zhang, J., Yan, H.: ‘Adaptive event-triggering H load frequency control for network-based power systems’, IEEE Trans. Ind. Electron., 2018, 65, (2), pp. 16851694.
    8. 8)
      • 1. Gu, K., Chen, J., Kharitonov, V.L.: ‘Stability of time-delay systems’ (Springer Science & Business Media, Birkhäuser Basel (Switzerland), 2003).
    9. 9)
      • 8. Xiong, L., Li, Y., Zhou, W.: ‘Improved stabilization for continuous dynamical systems with two additive time-varying delays’, Asian J. Control, 2015, 17, (6), pp. 22292240.
    10. 10)
      • 11. Zhang, C.K., He, Y., Jiang, L., et al: ‘Stability analysis of systems with time-varying delay via relaxed integral inequalities’, Syst. Control Lett., 2016, 92, pp. 5261.
    11. 11)
      • 29. Li, T., Yuan, R., Fei, S., et al: ‘Sampled-data synchronization of chaotic lur'e systems via an adaptive event-triggered approach’, Inf. Sci., 2018, 462, pp. 4054.
    12. 12)
      • 15. Li, J., Hu, M., Guo, L., et al: ‘Stability of uncertain impulsive stochastic fuzzy neural networks with two additive time delays in the leakage term’, Neural Comput. Appl., 2015, 26, (2), pp. 417427.
    13. 13)
      • 33. Lu, A.Y., Zhai, D., Dong, J., et al: ‘Network-based fuzzy H controller design for T–S fuzzy systems via a new event-triggered communication scheme’, Neurocomputing, 2018, 273, pp. 403413.
    14. 14)
      • 13. Hu, J., Wang, Z., Gao, H., et al: ‘Robust sliding mode control for discrete stochastic systems with mixed time delays, randomly occurring uncertainties, and randomly occurring nonlinearities’, IEEE Trans. Ind. Electron., 2011, 59, (7), pp. 30083015.
    15. 15)
      • 2. Fridman, E.: ‘Introduction to time-delay systems: analysis and control’ (Springer, 2014).
    16. 16)
      • 36. Willems, J.C.: ‘Dissipative dynamical systems part I: general theory’, Arch. Ration. Mech. Anal., 1972, 45, (5), pp. 321351.
    17. 17)
      • 9. Xu, H.T., Zhang, C.K., Jiang, L., et al: ‘Stability analysis of linear systems with two additive time-varying delays via delay-product-type lyapunov functional’, Appl. Math. Modell., 2017, 45, pp. 955964.
    18. 18)
      • 12. Park, P., Lee, W.I., Lee, S.Y.: ‘Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems’, J. Franklin Inst., 2015, 352, (4), pp. 13781396.
    19. 19)
      • 39. Ma, C., Qiao, H.: ‘Distributed asynchronous event-triggered consensus of nonlinear multi-agent systems with disturbances: an extended dissipative approach’, Neurocomputing, 2017, 243, pp. 103114.
    20. 20)
      • 7. Muthukumar, P., Arunagirinathan, S., Lakshmanan, S.: ‘Nonfragile sampled-data control for uncertain networked control systems with additive time-varying delays’, IEEE Trans. Cybern., 2019, 49, (4), pp. 15121523.
    21. 21)
      • 31. Tan, Y., Liu, Y., Niu, B., et al: ‘Event-triggered synchronization control for T–S fuzzy neural networked systems with time delay’, J. Franklin Inst., 2020, 357, pp. 59345953.
    22. 22)
      • 3. Briat, C.: ‘Linear parameter-varying and time-delay systems’, Anal. Obser. Filter Control, 2014, 3, pp. 57.
    23. 23)
      • 16. Naamane, K., Tissir, E.H.: ‘H filter design for T–S fuzzy nonlinear quadratic systems with time- varying delay’, Circuits Syst. Signal Process., 2019, 38, (11), pp. 49995017.
    24. 24)
      • 41. Gao, H., Zhang, H., Zheng, D., et al: ‘Finite-time event-triggered extended dissipative control for discrete time switched linear systems’, Int. J. Gener. Syst., 2019, 48, (5), pp. 476491.
    25. 25)
      • 18. Karthick, S., Sakthivel, R., Ma, Y.K., et al: ‘Disturbance rejection of fractional-order T–S fuzzy neural networks based on quantized dynamic output feedback controller’, Appl. Math. Comput., 2019, 361, pp. 846857.
    26. 26)
      • 25. Sathishkumar, M., Liu, Y.C.: ‘Hybrid-triggered reliable dissipative control for singular networked cascade control systems with cyber-attacks’, J. Franklin Inst., 2020, 357, (7), pp. 40084033.
    27. 27)
      • 21. Naamane, K., Tissir, E.H.: ‘Improved delay-dependent stability of nonlinear quadratic T–S fuzzy systems’, J. Circuits Syst. Comput., 2019, 29, (9), p. 2050134.
    28. 28)
      • 17. Naamane, K., Chaibi, R., Tissir, E.H., et al: ‘Stabilization of discrete-time T–S fuzzy systems with saturating actuators’. 2017 Int. Conf. on Advanced Technologies for Signal and Image Processing, Fez, Morocco, 2017, pp. 15.
    29. 29)
      • 14. Selvi, S., Sakthivel, R., Mathiyalagan, K.: ‘Robust L2L control for uncertain systems with additive delay components’, Circuits Syst. Signal Process., 2015, 34, (9), pp. 28192838.
    30. 30)
      • 35. Lozano, R., Brogliato, B., Egeland, O., et al: ‘Dissipative systems analysis and control. Theory and applications’, Meas. Sci. Technol., 2001, 12, (12), pp. 22112211.
    31. 31)
      • 4. Lam, J., Gao, H., Wang, C.: ‘Stability analysis for continuous systems with two additive time-varying delay components’, Syst. Control Lett., 2007, 56, (1), pp. 1624.
    32. 32)
      • 24. Yan, S., Shen, M., Nguang, S.K., et al: ‘A distributed delay method for event-triggered control of T–S fuzzy networked systems with transmission delay’, IEEE Trans. Fuzzy Syst., 2019, 27, (10), pp. 19631973.
    33. 33)
      • 5. Jiang, L., Yao, W., Wu, Q., et al: ‘Delay-dependent stability for load frequency control with constant and time-varying delays’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 932941.
    34. 34)
      • 27. Wu, Y., Jiang, B., Lu, N.: ‘A descriptor system approach for estimation of incipient faults with application to high-speed railway traction devices’, IEEE Trans. Syst. Man Cybern., Syst., 2019, 49, (10), pp. 21082118.
    35. 35)
      • 30. Li, Y.X., Yang, G.H.: ‘Observer-based fuzzy adaptive event-triggered control codesign for a class of uncertain nonlinear systems’, IEEE Trans. Fuzzy Syst., 2017, 26, (3), pp. 15891599.
    36. 36)
      • 37. Mathiyalagan, K., Park, J.H., Sakthivel, R.: ‘Robust reliable dissipative filtering for networked control systems with sensor failure’, IET Signal Process., 2014, 8, (8), pp. 809822.
    37. 37)
      • 34. Gnaneswaran, N., Joo, Y.H.: ‘Event-triggered stabilisation for T–S fuzzy systems with asynchronous premise constraints and its application to wind turbine system’, IET Control Theory Applic., 2019, 13, (10), pp. 15321542.
    38. 38)
      • 19. Sathishkumar, M., Sakthivel, R., Kwon, O., et al: ‘Finite-time mixed H and passive filtering for Takagi–Sugeno fuzzy nonhomogeneous markovian jump systems’, Int. J. Syst. Sci., 2017, 48, (7), pp. 14161427.
    39. 39)
      • 22. Yu, H., Ma, Y., Liu, J.: ‘Extended dissipative analysis for uncertain T–S fuzzy system with time-varying delay and randomly occurring gain variations’, J. Franklin Inst., 2019, 356, (15), pp. 85428568.
    40. 40)
      • 32. Peng, C., Yang, M., Zhang, J., et al: ‘Network-based H control for T–S fuzzy systems with an adaptive event-triggered communication scheme’, Fuzzy Sets Syst., 2017, 329, pp. 6176.
    41. 41)
      • 20. Lian, Z., He, Y., Zhang, C.K., et al: ‘Robust H control for T–S fuzzy systems with state and input time-varying delays via delay-product-type functional method’, IEEE Trans. Fuzzy Syst., 2019, 27, (10), pp. 19171930.
    42. 42)
      • 23. Nagamani, G., Joo, Y.H., Soundararajan, G., et al: ‘Robust event-triggered reliable control for T–S fuzzy uncertain systems via weighted based inequality’, Inf. Sci., 2020, 512, pp. 3149.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2020.0750
Loading

Related content

content/journals/10.1049/iet-cta.2020.0750
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading