Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Safety-guaranteed constraint-oriented modelling and control for bidirectional vehicular platoons

The safety of a vehicular platoon is seriously threatened in the presence of actuator saturations, (possibly fast) time-varying non-linear uncertainties. Meanwhile, the string stability and the strong string stability cannot eliminate the potential safety hazard caused by large initial error conditions. This study focuses on safety-guaranteed distributed control of the vehicular platoon with a bidirectional communication topology and the constant time headway policy. The authors formulate bilateral inequality constraints on the spacing error between adjacent vehicles to represent the collision-avoidance and compact formation performance. A novel state transformation technique is proposed to convert the bounded spacing error space to an unconstrained state space. On the basis, Comprehensive equality constraints for the transformed states are established by integrating the information of proximal (preceding and following) vehicles. In addition, an anti-windup compensation method is utilised to handle actuator saturations. Then an adaptive constraint-following controller is designed to render the uniform boundedness and uniform ultimate boundedness performance of the transformed state. As a result, the string stability, the strong string stability, the collision-avoidance and compact formation are guaranteed despite the presence of actuator saturations and complex uncertainties. Numerical simulations are performed to validate the effectiveness of the proposed control scheme.

References

    1. 1)
      • 8. Herman, I., Knorn, S., Shlén, A.: ‘Disturbance scaling in bidirectional vehicle platoons with different asymmetry in position and velocity coupling’, Automatica, 2017, 82, pp. 1320.
    2. 2)
      • 32. Zhao, X., Chen, Y.H., Zhao, H.: ‘Control design based on dead-zone and leakage adaptive laws for artificial swarm mechanical systems’, Int. J. Control, 2017, 90, (5), pp. 10771089.
    3. 3)
      • 5. Rödönyi, G., Gáspár, P., Bokor, J., et al: ‘Experimental verification of robustness in a semi-autonomous heavy vehicle platoon’, Control Eng. Pract., 2014, 28, pp. 1325.
    4. 4)
      • 13. Guo, X., Wang, J., Liao, F., et al: ‘Distributed adaptive integrated-sliding-mode controller synthesis for string stability of vehicle platoons’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (9), pp. 24192429.
    5. 5)
      • 15. Verginis, C.K., Bechlioulis, C.P., Dimarogonas, D.V., et al: ‘Robust distributed control protocols for large vehicular platoons with prescribed transient and steady-state performance’, IEEE Trans. Control Syst. Technol., 2018, 26, (1), pp. 299304.
    6. 6)
      • 34. Huang, J., Huang, Q., Deng, Y., et al: ‘Toward robust vehicle platooning with bounded spacing error’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2017, 36, (4), pp. 562572.
    7. 7)
      • 2. Lioris, J., Pedarsani, R., Tascikaraoglu, F.Y., et al: ‘Platoons of connected vehicles can double throughput in urban roads’, Transp. Res. C, Emerg. Technol., 2017, 77, pp. 292305.
    8. 8)
      • 38. Hale, J.K.: ‘Ordinary differential equations’ (Dover Publications, New York, USA, 2009).
    9. 9)
      • 16. Yu, X., Guo, G., Li, H.: ‘Longitudinal cooperative control for a bidirectional platoon of vehicles with constant time headway policy’. Proc: The 30th Chinese Control and Decision Conf., Shenyang, Liaoning, People's Republic of China, 2018, pp. 24272432.
    10. 10)
      • 36. Khalil, H.K., Grizzle, J.: ‘Nonlinear systems’, vol. 3 (Prentice hall New Jersey, New Jersey, 1996).
    11. 11)
      • 19. Ploeg, J., van de Wouw, N., Nijmeijer, H.: ‘ string stability of cascaded systems: application to vehicle platooning’, IEEE Trans. Control Syst. Technol., 2014, 22, (2), pp. 786793.
    12. 12)
      • 30. Chen, Y.H., Zhang, X.: ‘Adaptive robust approximate constraint-following control for mechanical systems’, J. Franklin Inst., 2010, 347, pp. 6986.
    13. 13)
      • 10. Hao, H., Barooah, P.: ‘stability and robustness of large platoons of vehicles with double-integrator models and nearest neighbor interaction’, Int. J. Robust Nonlin. Control, 2013, 23, (18), pp. 20972122.
    14. 14)
      • 24. Li, S., Yang, L., Gao, Z.: ‘Adaptive coordinated control of multiple high-speed trains with input saturation’, Nonlinear Dyn., 2015, 83, (4), pp. 21572169.
    15. 15)
      • 17. Feng, S., Zhang, Y., Li, S.B., et al: ‘String stability for vehicular platoon control: definitions and analysis methods’, Annu. Rev. Control, 2019, 47, pp. 8197.
    16. 16)
      • 37. Croless, M.J., Leitmann, G.: ‘Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems’, IEEE Trans. Autom. Control, 1981, 26, (5), pp. 11391144.
    17. 17)
      • 23. Polycarpou, M., Farrell, J., Sharma, M.: ‘On-line approximation control of uncertain nonlinear systems: issues with control input saturation’. Proc: American Control Conf., Denver, CO, USA, 2003.
    18. 18)
      • 22. Guo, G., Li, D.: ‘Adaptive sliding mode control of vehicular platoons with prescribed tracking performance’, IEEE Trans. Intell. Transp. Syst., 2019, 68, (8), pp. 75117520.
    19. 19)
      • 21. Swaroop, D.: ‘String stability of interconnected systems: An application to platooning in automated highway systems’, Ph.D. dissertation, University of California at Berkeley, Berkeley, CA, 1997.
    20. 20)
      • 6. Kwon, J.K., Chwa, D.: ‘Adaptive bidirectional platoon control using a coupled sliding mode control method’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (5), pp. 20402048.
    21. 21)
      • 14. Yan, M., Song, J., Zuo, L., et al: ‘Neural adaptive sliding-mode control of a vehicle platoon using output feedback’, Energies, 2017, 10, (11), pp. 19061923.
    22. 22)
      • 12. Herman, I., Martinec, D., Hurák, Z., et al: ‘Scaling in bidirectional platoons with dynamic controllers and proportional asymmetry’, IEEE Trans. Autom. Control, 2017, 62, (4), pp. 20342040.
    23. 23)
      • 26. Yang, Z., Huang, J., Hu, Z., et al: ‘Utilising bidirectional inequality constraints in optimal robust control for heterogeneous vehicular platoons’, IET Intell. Transp. Syst., 2020, 14, (7), pp. 802811.
    24. 24)
      • 7. Zegers, J.C., Semsar-Kazerooni, E., Ploeg, J., et al: ‘Consensus control for vehicular platooning with velocity constraints’, IEEE Trans. Control Syst. Technol., 2018, 26, (5), pp. 15921605.
    25. 25)
      • 1. Rahman, M.S., Abdel-Aty, M.: ‘Longitudinal safety evaluation of connected vehicles’ platooning on expressways', Accident Anal. Prev., 2018, 117, pp. 381391.
    26. 26)
      • 27. Shen, P., Zou, H., Zhang, X., et al: ‘Platoon of autonomous vehicles with rear-end collision avoidance through time-optimal path-constrained trajectory planning’. Proc: the 11th Int. Workshop on Robot Motion and Control, Wasowo Palace, 2017, pp. 232237.
    27. 27)
      • 33. Zheng, Y., Li, S.E., Li, K., et al: ‘Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies’, IEEE Trans. Control Syst. Technol., 2017, 25, (3), pp. 899910.
    28. 28)
      • 28. Shen, P., Zhang, X., Fang, Y.: ‘Complete and time-optimal path-constrained trajectory planning with torque and velocity constraints: theory and applications’, IEEE/ASME Trans. Mechatronics, 2018, 23, (2), pp. 735746.
    29. 29)
      • 25. Zhu, Y., Zhu, F.: ‘Barrier-function-based distributed adaptive control of nonlinear CAVs with parametric uncertainty and full-state constraint’, Transp. Res. C, Emerg. Technol., 2019, 104, pp. 249264.
    30. 30)
      • 3. Xu, L., Zhuang, W., Yin, G., et al: ‘Energy-oriented cruising strategy design of vehicle platoon considering communication delay and disturbance’, Transp. Res. C, Emerg. Technol., 2019, 107, pp. 3453.
    31. 31)
      • 29. Shen, P., Zhang, X., Fang, Y., et al: ‘Real-time acceleration-continuous path-constrained trajectory planning with built-in tradeoff between cruise and time-optimal motions’, IEEE Trans. Autom. Sci. Eng., 2020, 17, pp. 19111924, Online doi: 10.1109/TASE.2020.2980423.
    32. 32)
      • 20. Canudas de Wit, C., Brogliato, B.: ‘Stability issues for vehicle platooning in automated highway systems’. In Proc: IEEE Int. Conf. on Control Applications, Hawai'i, 1999, pp. 13771382.
    33. 33)
      • 18. Swaroop, D., Hedrick, J.K.: ‘String stability of interconnected systems’, IEEE Trans. Autom. Control, 1996, 41, (3), pp. 349357.
    34. 34)
      • 31. Huang, Q., Chen, Y.H., Chen, A.: ‘Adaptive robust control for fuzzy mechanical systems: constraint-following and redundancy in constraints’, IEEE Trans. Fuzzy Syst., 2015, 23, (4), pp. 11131126.
    35. 35)
      • 4. Li, S.E., Zheng, Y., Li, K., et al: ‘Dynamical modeling and distributed control of connected and automated vehicles: challenges an opportunities’, IEEE Trans. Intell. Transp. Syst. Mag., 2017, 9, (3), pp. 4658.
    36. 36)
      • 9. Martinec, D., Herman, I., Hurák, Z., et al: ‘Refinement of a bidirectional platooning controller by wave absorption at the leader’. Proc: European Control Conf., Strasbourg, France, 2014, pp. 28452850.
    37. 37)
      • 11. Yue, W., Guo, G., Yuan, W.: ‘Bidirectional platoon control of arduino controlled cars with actuator saturation and time-varying delay’, Control Eng. Appl. Inf., 2017, 19, (1), pp. 3748.
    38. 38)
      • 35. Besselink, B., Johansson, K.H.: ‘String stability and a delay-based spacing policy for vehicle platoons subject to disturbances’, IEEE Trans. Autom. Control, 2017, 62, (9), pp. 43764391.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2020.0740
Loading

Related content

content/journals/10.1049/iet-cta.2020.0740
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address