access icon free Event-triggered adaptive fuzzy bipartite consensus control of multiple autonomous underwater vehicles

This article studies the problem of event-triggered distributed adaptive bipartite consensus control for multiple autonomous underwater vehicle (AUV) systems with a fixed topology. Different from the existing literature on multiple AUV systems, the competitive relationship among AUVs is taken into consideration. In this situation, the bipartite consensus control is implemented to complete the controller design. Furthermore, combing the relative threshold strategy and the backstepping method, an adaptive event-triggered control scheme is developed to decrease the updating frequency of control input. Through the Lyapunov analysis, the proposed protocol ensures that the position tracking error of the considered system converges to a small neighbourhood near the origin. Finally, a simulation example is given to show the effectiveness of the control scheme.

Inspec keywords: autonomous underwater vehicles; control system synthesis; Lyapunov methods; control nonlinearities; adaptive control; position control; multi-robot systems; nonlinear control systems; mobile robots; distributed control; graph theory; continuous time systems; neurocontrollers

Other keywords: multiple autonomous underwater vehicles; event-triggered adaptive fuzzy bipartite consensus control; multiple AUV systems; multiple autonomous underwater vehicle systems; control input; adaptive bipartite consensus control; controller design; adaptive event-triggered control scheme

Subjects: Marine system control; Spatial variables control; Combinatorial mathematics; Control system analysis and synthesis methods; Telerobotics; Multivariable control systems; Mobile robots; Stability in control theory; Nonlinear control systems; Self-adjusting control systems

References

    1. 1)
    2. 2)
      • 40. Zhao, L., Yu, J., Lin, C., et al: ‘Adaptive neural consensus tracking for nonlinear multiagent systems using finite-time command filtered backstepping’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 48, (11), pp. 20032012.
    3. 3)
      • 41. Shen, Q., Jiang, B., Shi, P., et al: ‘Cooperative adaptive fuzzy tracking control for networked unknown nonlinear multiagent systems with time-varying actuator faults’, IEEE Trans. Fuzzy Syst., 2013, 22, (3), pp. 494504.
    4. 4)
      • 33. Xing, L., Wen, C., Liu, Z., et al: ‘Event-triggered output feedback control for a class of uncertain nonlinear systems’, IEEE Trans. Autom. Control, 2018, 64, (1), pp. 290297.
    5. 5)
      • 36. Wang, L.: ‘Adaptive fuzzy systems and control: design and stability analysis’ (Prentice-Hall, Inc., Englewood Cliffs, 1994), vol. 25, no. 2, pp. 15301535.
    6. 6)
      • 15. Li, T., Li, Z., Wang, D., et al: ‘Output-feedback adaptive neural control for stochastic nonlinear time-varying delays systems with unknown control directions’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (6), pp. 11881201.
    7. 7)
      • 4. Hou, S.P., Cheah, C.C.: ‘Can a simple control scheme work for a formation control of multiple autonomous underwater vehicles?’, IEEE Trans. Control Syst. Technol., 2011, 19, (5), pp. 10901101.
    8. 8)
    9. 9)
      • 32. Zhang, C., Yang, G.: ‘Event-triggered global finite-time control for a class of uncertain nonlinear systems’, IEEE Trans. Autom. Control, 2019, 65, (3), pp. 13401347.
    10. 10)
      • 10. Li, S., Wang, X.: ‘Finite-time consensus and collision avoidance control algorithms for multiple AUVs’, Automatica, 2013, 49, (11), pp. 33593367.
    11. 11)
      • 9. Zhang, Y., Yao, Y.: ‘Distributed adaptive sliding mode control for attitudes synchronization of multiple autonomous underwater vehicles’, Adv. Mech. Eng., 2017, 9, (11), pp. 110.
    12. 12)
      • 24. Xiao, W., Cao, L., Li, H., et al: ‘Observer-based adaptive consensus control for nonlinear multi-agent systems with time-delay’, Sci. China-Inf. Sci., 2020, 63, (3), pp. 117.
    13. 13)
      • 6. Shen, C., Shi, Y.: ‘Distributed implementation of nonlinear model predictive control for AUV trajectory tracking’, Automatica, 2020, 115, pp. 108863.
    14. 14)
      • 26. Yu, T., Ma, L., Zhang, H.: ‘Prescribed performance for bipartite tracking control of nonlinear multiagent systems with hysteresis input uncertainties’, IEEE Trans. Cybern., 2018, 49, (4), pp. 13271338.
    15. 15)
      • 47. Huo, X., Ma, L., Zhao, X., et al: ‘Event-triggered adaptive fuzzy output feedback control of mimo switched nonlinear systems with average dwell time’, Appl. Math. Comput., 2020, 365, p. 124665.
    16. 16)
      • 7. Hu, Y., Wang, L., Liang, J., et al: ‘Cooperative box-pushing with multiple autonomous robotic fish in underwater environment’, IET Control Theory Applic., 2011, 5, (17), pp. 20152022.
    17. 17)
      • 18. Li, T., Zhao, R., Chen, C., et al: ‘Finite-time formation control of under-actuated ships using nonlinear sliding mode control’, IEEE Trans. Cybern., 2018, 48, (11), pp. 32433253.
    18. 18)
      • 28. Zhou, Q., Chen, G., Lu, R.: ‘Disturbance-observer-based event-triggered control for multi-agent systems with input saturation’, Sci. China-Inf. Sci., 2019, 49, (11), pp. 15021516.
    19. 19)
      • 12. Liu, L., Wang, D., Peng, Z., et al: ‘Modular adaptive control for los-based cooperative path maneuvering of multiple underactuated autonomous surface vehicles’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 47, (7), pp. 16131624.
    20. 20)
      • 45. Lu, K., Xia, Y.: ‘Adaptive attitude tracking control for rigid spacecraft with finite-time convergence’, Automatica, 2013, 49, (12), pp. 35913599.
    21. 21)
      • 13. Zhao, L., Yu, J., Yu, H.: ‘Distributed adaptive consensus tracking control for multiple AUVs’. 2017 Seventh Int. Conf. on Information Science and Technology (ICIST), Da Nang, Vietnam, 2017, pp. 480484.
    22. 22)
    23. 23)
      • 3. Peng, Z., Wang, J., Wang, J.: ‘Constrained control of autonomous underwater vehicles based on command optimization and disturbance estimation’, IEEE Trans. Ind. Electron., 2018, 66, (5), pp. 36273635.
    24. 24)
      • 5. Bharamagoudra, M.R., Manvi, S.S., Gonen, B.: ‘Event driven energy depth and channel aware routing for underwater acoustic sensor networks: agent oriented clustering based approach’, Comput. Electr. Eng., 2017, 58, pp. 119.
    25. 25)
      • 43. Chen, W., Jiao, L., Li, R., et al: ‘Adaptive backstepping fuzzy control for nonlinearly parameterized systems with periodic disturbances’, IEEE Trans. Fuzzy Syst., 2010, 18, (4), pp. 674685.
    26. 26)
      • 27. Shen, Q., Shi, P., Zhu, J.: ‘Adaptive consensus control of leader-following systems with transmission nonlinearities’, Int. J. Control, 2019, 92, (2), pp. 317328.
    27. 27)
      • 37. Levant, A.: ‘Higher-order sliding modes, differentiation and output-feedback control’, Int. J. Control, 2003, 76, (9–10), pp. 924941.
    28. 28)
      • 46. Gao, Z., Guo, G.: ‘Fixed-time leader-follower formation of autonomous underwater vehicles with event-triggered intermittent communications’, IEEE Access, 2018, 6, pp. 2790227911.
    29. 29)
      • 35. Wang, T., Tong, S.: ‘Observer-based fuzzy adaptive optimal stabilization control for completely unknown nonlinear interconnected systems’, Neurocomputing, 2018, 313, pp. 415425.
    30. 30)
      • 19. Li, Z., Li, T., Feng, G., et al: ‘Neural network-based adaptive control for pure-feedback stochastic nonlinear systems with time-varying delays and dead-zone input’, IEEE Trans. Syst. Man Cybern. Syst., 2020, 50, (12), pp. 53175329.
    31. 31)
      • 11. Zhuang, Y., Huang, H., Sharma, S., et al: ‘Cooperative path planning of multiple autonomous underwater vehicles operating in dynamic ocean environment’, ISA Trans., 2019, 94, pp. 174186.
    32. 32)
      • 14. Liu, L., Wang, D., Peng, Z., et al: ‘Cooperative path following ring-networked under-actuated autonomous surface vehicles: algorithms and experimental results’, IEEE Trans. Cybern., 2020, 50, (4), pp. 15191529.
    33. 33)
      • 2. Wang, Y., Yan, W., Li, J.: ‘Passivity-based formation control of autonomous underwater vehicles’, IET Control Theory Applic., 2012, 6, (4), pp. 518525.
    34. 34)
    35. 35)
      • 23. Bai, W., Li, T., Tong, S.: ‘NN reinforcement learning adaptive control for a class of nonstrict-feedback discrete-time systems’, IEEE Trans. Cybern., 2020, 50, (11), pp. 45734584.
    36. 36)
      • 17. Ma, C., Qin, Z., Zhao, Y.: ‘Bipartite consensus of integrator multi-agent systems with measurement noise’, IET Control Theory Applic., 2017, 11, (18), pp. 33133320.
    37. 37)
    38. 38)
      • 38. Zhao, L., Yu, J., Lin, C.: ‘Distributed adaptive output consensus tracking of nonlinear multi-agent systems via state observer and command filtered backstepping’, Inf. Sci., 2019, 478, pp. 355374.
    39. 39)
      • 34. Liu, Y., Tong, S., Chen, C.P.: ‘Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics’, IEEE Trans. Fuzzy Syst., 2012, 21, (2), pp. 275288.
    40. 40)
      • 44. Shi, Q., Li, T., Li, J., et al: ‘Adaptive leader-following formation control with collision avoidance for a class of second-order nonlinear multi-agent systems’, Neurocomputing, 2019, 350, pp. 282290.
    41. 41)
      • 21. Wang, W., Liang, H., Pan, Y., et al: ‘Prescribed performance adaptive fuzzy containment control for nonlinear multiagent systems using disturbance observer’, IEEE Trans. Cybern., 2020, 50, (9), pp. 38793891.
    42. 42)
      • 39. Shen, Q., Shi, P.: ‘Distributed command filtered backstepping consensus tracking control of nonlinear multiple-agent systems in strict-feedback form’, Automatica, 2015, 53, pp. 120124.
    43. 43)
      • 8. Peng, Z., Wang, D., Li, T., et al: ‘Output-feedback cooperative formation maneuvering of autonomous surface vehicles with connectivity preservation and collision avoidance’, IEEE Trans. Cybern., 2020, 50, (6), pp. 25272535.
    44. 44)
      • 31. Ma, H., Li, H., Lu, R., et al: ‘Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances’, Science China-Inf. Sci., 2020, 63, (5), pp. 116.
    45. 45)
      • 42. Bai, W., Zhou, Q., Li, T., et al: ‘Adaptive reinforcement learning neural network control for uncertain systems with input saturation’, IEEE Trans. Cybern., 2019, 50, (8), pp. 34333443.
    46. 46)
    47. 47)
      • 1. Gafurov, S.A., Klochkov, E.V.: ‘Autonomous unmanned underwater vehicles development tendencies’, Proc. Eng., 2015, 106, pp. 141148.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2020.0706
Loading

Related content

content/journals/10.1049/iet-cta.2020.0706
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading