access icon free Integrated control of torque and emission of a diesel engine based on LPV-MPC

This study presents an integrated control scheme of a diesel engine which aims to ensure quick torque response while limiting the average NOx emission below the certain specification. To start with, the sensitivity analysis is performed to recognize the key factors determined to balance emission, torque and fuel consumption. Considering the strong nonlinearity of the diesel engine, a multi-input multi-output (MIMO) linear parameter varying (LPV) model is developed. Unlike the conventional state-depended LPV modelling process, the proposed LPV model is built based on a kernel function with a novel form of state-free predictive equation so that the system outputs are directly computed. The control objective of coordinating torque tracking and emission reduction is then accomplished by designing a model predictive controller that regulates the fuel injection quantity, fuel injection angle, exhaust gas recirculation (EGR) rate and the opening degree of variable geometry turbine (VGT) valve. Finally, the developed LPV model and the MPC controller are testified with a high-fidelity commercial diesel engine model. The results show that the LPV-MPC controller is able to satisfy the NOx emission specification and the engine torque tracks the desired reference fast in transients, while the control variables are suitably actuated within the actuator constraints.

Inspec keywords: linear systems; diesel engines; control system synthesis; torque control; fuel economy; exhaust systems; internal combustion engines; nonlinear control systems; valves; predictive control; actuators; fuel systems

Other keywords: quick torque response; high-fidelity commercial diesel engine model; engine torque; LPV-MPC controller; multiinput multioutput linear parameter; average NOx emission; control variables; conventional state-depended LPV modelling process; torque tracking; NOx emission specification; state-free predictive equation; model predictive controller; control objective; integrated control scheme; emission reduction; developed LPV model

Subjects: Engines; Control system analysis and synthesis methods; Linear control systems; Mechanical variables control; Nonlinear control systems; Optimal control

References

    1. 1)
      • 25. Majecki, P., Grimble, M.J., Haskara, I., et al: ‘Total engine optimization and control for SI engines using linear parameter-varying models’. Proc. American Control Conf. (ACC), Seattle, USA, 2017, pp. 36313637.
    2. 2)
      • 29. Wu, F.: ‘A generalized LPV system analysis and control synthesis framework’, Int. J. Control, 2001, 74, (7), pp. 745759.
    3. 3)
      • 18. Sakai, Y., Kanai, M., Yamakita, M., et al: ‘Torque demand control by nonlinear MPC for speed control of vehicles with variable valve lift engine’, IFAC Proc. Vol., 2010, 43, (7), pp. 494499.
    4. 4)
      • 27. Majecki, P., Der Molen, G.M., Grimble, M.J., et al: ‘Real-time predictive control for SI engines using linear parameter-varying models’, IFAC-PapersOnLine, 2015, 48, (23), pp. 94101.
    5. 5)
      • 32. Ameyoe, A., Chevrel, P., Carpentier, E.L., et al: ‘Identification of a linear parameter varying driver model for the detection of distraction’, IFAC-PapersOnLine, 2015, 48, (26), pp. 3742.
    6. 6)
      • 16. Besselmann, T., Lofberg, J., Morari, M., et al: ‘Explicit MPC for LPV systems: stability and optimality’, IEEE Trans. Autom. Control, 2012, 57, (9), pp. 23222332.
    7. 7)
      • 4. Su, H., Zhang, Y., Wang, J., et al: ‘Researches of common-rail diesel engine emission control based on cylinder pressure feedback’. Proc. IEEE Vehicle Power and Propulsion Conf. (VPPC), Harbin, China, 2008.
    8. 8)
      • 21. Nguyen, A., Zhang, H., Sentouh, C., et al: ‘Input-constrained LPV output feedback control for path following of autonomous ground vehicles’. Proc. Annual American Control Conf. (ACC), Milwaukee, USA, 2018, pp. 32333238.
    9. 9)
      • 3. Nademi, H., Tahami, F.: ‘A predictive control of a turbocharged diesel engine for exhaust emission mitigation’. Proc. 41ST Annual Conf. of the IEEE Industrial Electronics, Yokohama, Japan, 2015, pp. 48904895.
    10. 10)
      • 20. Zhang, H., Zhang, G., Wang, J.: ‘H observer design for LPV systems with uncertain measurements on scheduling variables: application to an electric ground vehicle’, IEEE-ASME Trans. Mechatronics, 2016, 21, (3), pp. 16591670.
    11. 11)
    12. 12)
      • 12. Diehl, M., Ferreau, H.J., Haverbeke, N., et al: ‘Efficient numerical methods for nonlinear MPC and moving horizon estimation’, Lecture Notes Control Inf. Sci., 2009, 384, pp. 391417.
    13. 13)
      • 10. Borhan, H., Vahidi, A., Phillips, A.M., et al: ‘MPC-based energy management of a power-split hybrid electric vehicle’, IEEE Trans. Control Syst. Technol., 2012, 20, (3), pp. 593603.
    14. 14)
      • 24. Du, H., Zhang, N., Dong, G., et al: ‘Stabilizing vehicle lateral dynamics with considerations of parameter uncertainties and control saturation through robust yaw control’, IEEE Trans. Veh. Technol., 2010, 59, (5), pp. 25932597.
    15. 15)
      • 14. Moriyasu, R., Ueda, M., Ikeda, T., et al: ‘Real-time MPC design based on machine learning for a diesel engine air path system’, IFAC-PapersOnLine, 2018, 51, (31), pp. 542548.
    16. 16)
      • 22. Nguyen, A., Chevrel, P., Claveau, F., et al: ‘Gain-scheduled static output feedback control for saturated LPV systems with bounded parameter variations’, Automatica, 2018, 89, pp. 420424.
    17. 17)
      • 2. Hong, S., Park, I., Chung, J., et al: ‘Gain scheduled controller of EGR and VGT systems with a model-based Gain scheduling strategy for diesel engines’, IFAC-PapersOnLine, 2015, 48, (15), pp. 109116.
    18. 18)
    19. 19)
      • 30. Bamieh, B., Giarre, L.: ‘Identification of linear parameter varying models’, Int. J. Robust Nonlinear Control, 2002, 12, (9), pp. 841853.
    20. 20)
      • 33. Hu, Y., Yurkovich, S., Guezennec, Y., et al: ‘A technique for dynamic battery model identification in automotive applications using linear parameter varying structures’, Control Eng. Pract., 2009, 17, (10), pp. 11901201.
    21. 21)
      • 5. Salehi, R., Martz, J., Stefanopoulou, A., et al: ‘Decentralized feedback control of pumping losses and NOx emissions in diesel engines’, J. Eng. Gas Turbines Power-Trans. ASME, 2018, 140, (10), pp. 19.
    22. 22)
      • 37. Zhang, D., Shi, P., Yu, L.: ‘Containment control of linear multiagent systems with aperiodic sampling and measurement size reduction’, IEEE Trans. Neural Netw., 2018, 29, (10), pp. 50205029.
    23. 23)
    24. 24)
      • 13. Wang, H., Meng, Y., Zhang, Q., et al: ‘MPC-based precision cooling strategy (PCS) for Efficient Thermal Management of Automotive Air Conditioning System’. The 3rd IEEE Conference on Control Technology and Applications (CCTA), Hong Kong, 2019.
    25. 25)
      • 17. Ferreau, H.J., Bock, H., Diehl, M., et al: ‘An online active set strategy to overcome the limitations of explicit MPC’, Int. J. Robust Nonlinear Control, 2008, 18, (8), pp. 816830.
    26. 26)
      • 9. Venkat, A.N., Hiskens, I.A., Rawlings, J.B., et al: ‘Distributed MPC strategies with application to power system automatic generation control’, IEEE Trans. Control Syst. Technol., 2008, 16, (6), pp. 11921206.
    27. 27)
      • 15. Choroszucha, R.B., Sun, J., Butts, K.R., et al: ‘Closed-loop model order reduction and MPC for diesel engine airpath control’. Proc. American Control Conf. (ACC), Chicago, USA, January 2015, pp. 32793284.
    28. 28)
      • 34. Wei, X., Re, L.D.: ‘LPV identification of a diesel engine torque model’, IFAC Proc. Vol., 2003, 36, (16), pp. 14051410.
    29. 29)
      • 26. Salcedo, J.V., Martinez, M.: ‘LPV identification of a turbocharged diesel engine’, Appl. Numer. Math., 2008, 58, (10), pp. 15531571.
    30. 30)
      • 23. Xie, X., Lam, J., Li, P., et al: ‘Finite-time H control of periodic piecewise linear systems’, Int. J. Syst. Sci., 2017, 48, (11), pp. 23332344.
    31. 31)
      • 35. Zhang, H., Wang, J.: ‘Active steering actuator fault detection for an automatically-steered electric ground vehicle’, IEEE Trans. Veh. Technol., 2017, 66, (5), pp. 36853702.
    32. 32)
      • 6. Zamboni, G., et al: ‘A study on combustion parameters in an automotive turbocharged diesel engine’, Energies, 2018, 11, (10), p. 2531.
    33. 33)
      • 31. Dubuc, D., Sename, O., Breschpietri, D., et al: ‘Exhaust pressure LPV observer for turbocharged diesel engine on-board diagnosis’, IFAC-PapersOnLine, 2018, 51, (24), pp. 389394.
    34. 34)
      • 1. Yan, S., Liu, L., Chang, G., et al: ‘EGR control and simulation about EGR rates influence on diesel engine operation performance’. Proc. Int. Conf. on Electric Information and Control Engineering (ICEICE), Wuhan, China, 2011, pp. 354358.
    35. 35)
      • 36. ‘GT-POWER Engine Simulation Software’, https://www.gtisoft.com/gt-suite-applications/propulsion-systems/gt-power-engine-simulation-software, accessed 7 June 2020.
    36. 36)
      • 11. Afram, A., Janabisharifi, F.: ‘Theory and applications of HVAC control systems íC A review of model predictive control (MPC)’, Build. Environ., 2014, 72, pp. 343355.
    37. 37)
      • 38. Zhang, D., Xu, Z., Feng, G., et al: ‘Asynchronous resilient output consensus of switched heterogeneous linear multivehicle systems with communication delay’, IEEE-ASME Trans. Mechatronics, 2019, 24, (6), pp. 26272640.
    38. 38)
      • 28. Zhu, Y., Xu, Z.: ‘A method of LPV model identification for control’, IFAC Proc. Vol., 2008, 41, (2), pp. 50185023.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2020.0699
Loading

Related content

content/journals/10.1049/iet-cta.2020.0699
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading