access icon free Gain-scheduled steering control for autonomous vehicles

This study presents a linear parameter varying (LPV) approach for the lateral control of autonomous vehicles, in order to take into account the whole operating domain of longitudinal speeds, as well as the variation of the look-ahead distance. Combining a dynamical vehicle model with look-ahead dynamics, together with an identified actuator model including an input delay, the closed-loop performances can be achieved and the tracking capabilities can be improved for every speed. This is obtained in particular through ad hoc representation of the look-ahead time as a parameter-dependent function. An LPV control problem is formulated considering parameter-dependent weighting functions, allowing the control adaptation for all speeds. The synthesis is performed using the gridding approach, in order to account for varying parameter rate. The proposed steering control system has been implemented on a real electric Renault Zoe car. The performances are therefore assessed experimentally on a real test track with a varying longitudinal speed profile, and compared with a classical LPV polytopic controller, which proves the advanced lane-tracking capabilities of the proposed methodology.

Inspec keywords: automobiles; steering systems; robust control; motion control; vehicle dynamics; road vehicles; position control; linear systems; closed loop systems; wheels; control system synthesis; aircraft control

Other keywords: operating domain; steering control system; identified actuator model; control adaptation; test track; gridding approach; look-ahead time; lateral control; parameter rate; longitudinal speeds; ad hoc representation; varying longitudinal speed profile; look-ahead dynamics; parameter-dependent weighting functions; gain-scheduled steering control; advanced lane-tracking capabilities; parameter-dependent function; dynamical vehicle model; look-ahead distance; LPV control problem; linear parameter; classical LPV polytopic controller; input delay; closed-loop performances; autonomous vehicles

Subjects: Mechanical components; Control system analysis and synthesis methods; Stability in control theory; Optimal control; Aerospace control; Linear control systems; Vehicle mechanics; Road-traffic system control; Spatial variables control

References

    1. 1)
      • 3. Shladover, S.E.: ‘Review of the state of development of advanced vehicle control systems (AVCS)’, Veh. Syst. Dyn., 1995, 24, (6-7), pp. 551595.
    2. 2)
    3. 3)
      • 31. Becker, G., Packard, A.: ‘Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback’, Syst. Control Lett., 1994, 23, (3), pp. 205215.
    4. 4)
      • 23. Hingwe, P., Tan, H.S., Packard, A.K., et al: ‘Linear parameter varying controller for automated lane guidance: experimental study on tractor-trailers’, IEEE Trans. Control Syst. Technol., 2002, 10, (6), pp. 793806.
    5. 5)
      • 2. González, D., Pérez, J., Milanés, V., et al: ‘A review of motion planning techniques for automated vehicles’, IEEE Trans. Intell. Transp. Syst., 2015, 17, (4), pp. 11351145.
    6. 6)
      • 34. Lofberg, J.: ‘YALMIP: a toolbox for modeling and optimization in MATLAB’. Proc. IEEE Int. Conf. Robot. Autom., New Orleans, USA, September 2004, pp. 284289.
    7. 7)
      • 18. Barker, J.M., Balas, G.J.: ‘Comparing linear parameter-varying gain-scheduled control techniques for active flutter suppression’, J. Guid. Control Dyn., 2000, 23, (5), pp. 948955.
    8. 8)
      • 7. Jochem, T., Pomerleau, D.: ‘Life in the fast lane: the evolution of an adaptive vehicle control system’, AI Mag., 1996, 17, (2), pp. 1150.
    9. 9)
      • 5. Doumiati, M., Sename, O., Dugard, L., et al: ‘Integrated vehicle dynamics control via coordination of active front steering and rear braking’, Eur. J. Control, 2013, 19, (2), pp. 121143.
    10. 10)
      • 28. Apkarian, P., Gahinet, P., Becker, G.: ‘Self-scheduled H control of linear parameter-varying systems: a design example’, Automatica, 1995, 31, (9), pp. 12511261.
    11. 11)
      • 17. Mohammadpour, J., Scherer, C.W.: ‘Control of linear parameter varying systems with applications’ (Springer Press, Boston, 2012).
    12. 12)
      • 11. Falcone, P., Borrelli, F., Asgari, J., et al: ‘Predictive active steering control for autonomous vehicle systems’, IEEE Trans. Control Syst. Technol., 2007, 15, (3), pp. 566580.
    13. 13)
      • 8. Broggi, A., Bertozzi, M., Fascioli, A., et al: ‘The ARGO autonomous vehicle's vision and control systems’, Int. J. Intell. Control Syst., 1999, 3, (4), pp. 409441.
    14. 14)
      • 26. Rajamani, R.: ‘Vehicle dynamics and control’ (Science Press, Boston, 2011).
    15. 15)
      • 15. Nguyen, A.T., Sentouh, C., Popieul, J.C.: ‘Fuzzy steering control for autonomous vehicles under actuator saturation: design and experiments’, J. Franklin Inst., 2018, 355, (18), pp. 93749395.
    16. 16)
      • 14. Onieva, E., Naranjo, J.E., Milanés, V., et al: ‘Automatic lateral control for unmanned vehicles via genetic algorithms’, Appl. Soft Comput., 2011, 11, (1), pp. 13031309.
    17. 17)
      • 4. Guo, H., Liu, F., Xu, F., et al: ‘Nonlinear model predictive lateral stability control of active chassis for intelligent vehicles and its FPGA implementation’, IEEE Trans. Syst. Man Cybern. Syst., 2017, 49, (1), pp. 213.
    18. 18)
      • 24. Kang, C.M., Lee, S.H., Chung, C.C.: ‘Linear parameter varying design for lateral control using kinematics of vehicle motion’. Proc. IEEE American Control Conf., Milwaukee, USA, June 2018, pp. 32393244.
    19. 19)
      • 20. Gáspár, P., Szabó, Z., Bokor, J., et al: ‘Robust control design for active driver assistance systems’ (Springer Press, Cham, 2012).
    20. 20)
      • 27. Taylor, C.J., Košecká, J., Blasi, R., et al: ‘A comparative study of vision-based lateral control strategies for autonomous highway driving’, Int. J. Rob. Res., 1999, 18, (5), pp. 442453.
    21. 21)
      • 22. Hoffmann, C., Werner, H.: ‘A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations’, IEEE Trans. Control Syst. Technol., 2015, 23, (2), pp. 416433.
    22. 22)
      • 16. Tan, H.S., Huang, J.: ‘Design of a high-performance automatic steering controller for bus revenue service based on how drivers steer’, IEEE Trans. Robot., 2014, 30, (5), pp. 11371147.
    23. 23)
      • 13. Pérez, J., Milanés, V., Onieva, E.: ‘Cascade architecture for lateral control in autonomous vehicles’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (1), pp. 7382.
    24. 24)
      • 19. Sename, O., Gaspar, P., Bokor, J.: ‘Robust control and linear parameter varying approaches: application to vehicle dynamics’ (Springer Press, Berlin, 2013).
    25. 25)
      • 1. Gruel, W., Stanford, J.M.: ‘Assessing the long-term effects of autonomous vehicles: a speculative approach’, Transp. Res. Proc., 2016, 13, pp. 1829.
    26. 26)
      • 9. Thrun, S., Montemerlo, M., Dahlkamp, H., et al: ‘Stanley: the robot that won the DARPA grand challenge’, J. Field Robot., 2006, 23, (9), pp. 661692.
    27. 27)
      • 25. Alcalá, E., Puig, V., Quevedo, J.: ‘LPV-MP planning for autonomous racing vehicles considering obstacles’, Rob. Auton. Syst., 2020, 124, p. 103392.
    28. 28)
      • 29. Wu, F.: ‘Control of linear parameter varying systems’, PhD Thesis, University of California, Berkeley, 1995.
    29. 29)
      • 30. Wu, F., Yang, X.H., Packard, A., et al: ‘Induced L2-norm control for LPV systems with bounded parameter variation rates’, Int. J. Robust Nonlinear Control, 1996, 6, (9-10), pp. 983998.
    30. 30)
      • 33. Hjartarson, A., Seiler, P., Packard, A.: ‘LPVTools: a toolbox for modeling, analysis, and synthesis of parameter varying control systems’. Proc. IFAC-PapersOnLine Grenoble, France, October 2015, pp. 139145.
    31. 31)
      • 21. Sename, O., Dugard, L., Gaspar, P.: ‘H/LPV controller design for an active anti-roll bar system of heavy vehicles using parameter dependent weighting functions’, Heliyon, 2019, 5, (6), p. e01827.
    32. 32)
      • 6. Ackermann, J., Bünte, T., Odenthal, D.: ‘Advantages of active steering for vehicle dynamics control’, 1999.
    33. 33)
      • 32. Coulter, R.C.: ‘Implementation of the pure pursuit path tracking algorithm’ (Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, USA, 1992).
    34. 34)
      • 10. Xu, P., Dherbomez, G., Héry, E., et al: ‘System architecture of a driverless electric car in the grand cooperative driving challenge’, IEEE Intell. Transp. Syst. Mag., 2018, 10, (1), pp. 4759.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2020.0698
Loading

Related content

content/journals/10.1049/iet-cta.2020.0698
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading