access icon free Experimental validation of the simultaneous damping and tracking controller design strategy for high-bandwidth nanopositioning – a PAVPF approach

For scanning applications, damping and tracking controllers are employed in a dual-loop fashion. Whilst these damping and tracking controllers are designed sequentially in literature (damping first, tracking later), it has been found that the tracking controller (typically integral or proportional–integral) influences the 'desired' pole locations (and thereby its damping performance) achieved by the positive acceleration, velocity and position feedback (PAVPF) damping controller. This work starts by first highlighting this unwanted effect that results in low positioning bandwidth. To address this drawback, this work presents the design, analysis and experimental validation of the simultaneous design method for the PAVPF control-based combined damping and tracking scheme, aimed at achieving accurate, high-bandwidth nanopositioning. It also details a recursive analytical method to simultaneously optimise the damping and tracking controller parameters resulting in almost a three-fold increase in closed-loop bandwidth when compared with the traditional sequential method. To further confirm the advantages of the proposed simultaneous design method, comparative experimental results conducted on one axis of a piezo-actuated nanopositioner are presented. Significant improvements in the steady-state positioning as well as transient response are noted. These improvements combined, result in significant gains in the raster scanning performance of nanopositioning stages.

Inspec keywords: damping; piezoelectric actuators; position control; nanopositioning; control system synthesis; transient response; closed loop systems; feedback; tracking; open loop systems

Other keywords: simultaneous damping; low positioning bandwidth; simultaneous design method; tracking controller design strategy; damping performance; bandwidth nanopositioning; high-bandwidth nanopositioning; closed-loop bandwidth; PAVPF control-based system; tracking controller parameters

Subjects: Microactuators; Control system analysis and synthesis methods; Spatial variables control

References

    1. 1)
      • 21. Li, J., Yang, L.: ‘Adaptive PI-based sliding mode control for nanopositioning of piezoelectric actuators’, Math. Probl. Eng. - Special Issue on Active Vibration Control in Mechanical Systems, 2014, 2014, Article id: 357864, pp. 110.
    2. 2)
      • 20. Sabariananda, D.V., Karthikeyana, P., Muthuramalingam, T.: ‘A review on control strategies for compensation of hysteresis and creep on piezoelectric actuators based micro systems’, Mech. Syst. Signal Process., 2020, 140, p. 106634.
    3. 3)
      • 24. Altaher, M., Aphale, S.S.: ‘Enhanced positioning bandwidth in nanopositioners via strategic pole placement of the tracking controller’, Vibration, 2019, 2, (1), pp. 4963.
    4. 4)
      • 19. Kara-Mohamed, M., Heath, W.P., Lanzon, A.: ‘Enhanced tracking for nanopositioning systems using feedforward/Feedback multivariable control design’, IEEE Trans. Contr. Syst. Technol., 2015, 23, (3), pp. 10031013.
    5. 5)
      • 9. Teo, Y.R, Yong, Y., Fleming, A.J.: ‘A comparison of scanning methods and the vertical control implications for scanning probe microscopy’, Asian J. Control, 2018, 20, (4), pp. 13521366.
    6. 6)
      • 29. Marinangeli, L., Alijani, F., Hosseinnia, S.H.: ‘Fractional-order positive position feedback compensator for active vibration control of a smart composite plate’, J. Sound Vib., 2018, 412, pp. 116.
    7. 7)
      • 5. Rana, M.S., Pota, H.R., Petersen, I.R.: ‘Improvement in the imaging performance of atomic force microscopy: a survey’, IEEE Trans. Autom. Sci. Eng., 2017, 14, (2), pp. 12651285.
    8. 8)
      • 27. Mohammadi, A., Fowler, A.G., Yong, Y.K., et al: ‘A feedback controlled MEMS nanopositioner for on-chip high-speed AFM’, J. Microelectromech. Syst., 2014, 23, (3), pp. 610619.
    9. 9)
      • 11. Yang, M.-J., Niu, J.-B., Li, C.-X., et al: ‘High-bandwidth control of nanopositioning stages via an inner-loop delayed position feedback’, IEEE Trans. Automat. Sci. Eng., 2015, 12, (4), pp. 13571368.
    10. 10)
      • 33. Russell, D., Fleming, A.J., Aphale, S.S.: ‘Simultaneous optimization of damping and tracking controller parameters via selective pole placement for enhanced positioning bandwidth of nanopositioners’, ASME. J. Dyn. Sys., Meas., Control., 2015, 137, (10), p. 101004.
    11. 11)
      • 25. Fairbairn, M.W., Moheimani, S.O.R.: ‘Control techniques for increasing the scan speed and minimizing image artifacts in tapping-mode atomic force microscopy’, IEEE Contr. Syst. Mag., 2013, 33, (6), pp. 4667.
    12. 12)
      • 34. Gu, G.-Y., Zhu, L.-M., Su, C.-Y., et al: ‘Motion control of piezoelectric positioning stages: modeling, controller design, and experimental evaluation’, IEEE/ASME Trans. Mechatron., 2013, 18, (5), pp. 14591471.
    13. 13)
      • 22. Russell, D., Aphale, S.S.: ‘Evaluating the performance of robust controllers for a nanopositioning platform under loading’, IFAC PapersOnLine, 2017, 50, (1), pp. 1089510900.
    14. 14)
      • 26. Mahmood, I.A., Moheimani, S.O.R.: ‘Making a commercial atomic force microscope more accurate and faster using positive position feedback control’, Rev. Sci. Instrum., 2009, 80, (6), p. 063705.
    15. 15)
      • 35. Fleming, A.J.: ‘Nanopositioning system with force feedback for high-performance tracking and vibration control’, IEEE/ASME Trans. Mechatron., 2010, 15, (3), pp. 433447.
    16. 16)
      • 13. Clayton, G.M., Tien, S., Leang, K.K., et al: ‘A review of feedforward control approaches in nanopositioning for high-speed SPM’, ASME. J. Dyn. Sys., Meas., Control., 2009, 131, (6), p. 061101.
    17. 17)
      • 12. Schitter, J., Thurner, P.J., Hansma, P.K.: ‘Design and input-shaping control of a novel scanner for high-speed atomic force microscopy’, Mechatronics, 2008, 18, (5), pp. 282288.
    18. 18)
      • 3. Heath, G.R., Scheuring, S.: ‘High-speed AFM height spectroscopy reveals μs- dynamics of unlabeled biomolecules’, Nat. Commun., 2018, 9, (1), p. 4983.
    19. 19)
      • 4. Keya, J.J., Inoue, D., Suzuki, Y., et al: ‘High-resolution imaging of a single gliding protofilament of tubulins by HS-AFM’, Sci. Rep., 2017, 7, (1), p. 6166.
    20. 20)
      • 6. Gu, G.-Y., Zhu, L.-M., Su, C.-Y., et al: ‘Modeling and control of piezo-actuated nanopositioning stages: a survey’, IEEE Trans. Autom. Sci. Eng., 2016, 13, (1), pp. 313332.
    21. 21)
      • 30. Bhikkaji, B., Ratnam, M., Fleming, A.J., et al: ‘High-performance control of piezoelectric tube scanners’, IEEE Trans. Contr. Syst. Technol., 2007, 15, (5), pp. 853866.
    22. 22)
      • 18. Salapaka, S., Sebastian, A., Cleveland, J.P., et al: ‘High bandwidth nanopositioner: a robust control approach’, Rev. Sci. Instrum., 2002, 73, (9), pp. 32323241.
    23. 23)
      • 1. Binnig, G., Quate, C.F., Gerber, C.: ‘Atomic force microscope’, Phys. Rev. Lett., 1986, 56, (9), pp. 930933.
    24. 24)
      • 2. Dufrene, Y.F., Ando, T., Garcia, R., et al: ‘Imaging modes of atomic force microscopy for application in molecular and cell biology’, Nat. Nanotechnol., 2017, 12, (4), pp. 295307.
    25. 25)
      • 10. Rana, M.S., Pota, H.R., Petersen, I.R.: ‘A survey of methods used to control piezoelectric tube scanners in high-speed AFM imaging’, Asian J. Control, 2018, 20, (2), pp. 121.
    26. 26)
      • 36. Babarinde, A.K., Zhu, L. -M., Aphale, S.S.: ‘Simultaneous design of positive acceleration velocity and position feedback based combined damping and tracking control scheme for nanopositioners’. Proc. 18th European Control Conf. (ECC), Naples, Italy, 2019, pp. 608613.
    27. 27)
      • 8. Xie, H., Wen, Y., Shen, X., et al: ‘High-speed AFM imaging of nanopositioning stages using H and iterative learning control’, IEEE Trans. Ind. Electron., 2020, 67, (3), pp. 24302439.
    28. 28)
      • 28. Omidi, E., Mahmoodi, S.N., Shepard, W.S.: ‘Multi positive feedback control method for active vibration suppression in flexible structures’, Mechatronics, 2016, 33, pp. 2333.
    29. 29)
      • 15. Fang, J., Zhang, L., Long, Z., et al: ‘Fuzzy adaptive sliding mode control for the precision position of piezo-actuated nano positioning stage’, Int. J. Prec. Eng. Manuf., 2018, 19, (5), pp. 14471456.
    30. 30)
      • 17. Aphale, S.S., Ferreira, A., Moheimani, S.O.R.: ‘A robust loop-shaping approach to fast and accurate nanopositioning’, Sensor Actuat A: Phys, 2013, 204, pp. 8896.
    31. 31)
      • 7. Bazaei, A., Yong, Y.K., Moheimani, S.O.R.: ‘Combining spiral scanning and internal model control for sequential AFM imaging at video rate’, IEEE/ASME Trans. Mechatron., 2017, 22, (1), pp. 371380.
    32. 32)
      • 32. Li, L., Li, C.-X., Gu, G., et al: ‘Positive acceleration, velocity and position feedback based damping control approach for piezo-actuated nanopositioning stages’, Mechatronics, 2017, 47, pp. 97104.
    33. 33)
      • 14. Tang, H., Gao, J., Chen, X., et al: ‘Development and repetitive-compensated PID control of a nanopositioning stage with large-stroke and decoupling property’, IEEE Trans. Ind. Electron., 2018, 65, (5), pp. 39954005.
    34. 34)
      • 16. Xu, Q.: ‘Continuous integral terminal third-order sliding mode motion control for piezoelectric nanopositioning system’, IEEE/ASME Trans. Mechatron., 2017, 22, (4), pp. 18281838.
    35. 35)
      • 23. Bhikkaji, B., Ratnam, M., Moheimani, S.O.R.: ‘PVPF control of piezoelectric tube scanners’, Sensor Actuat A: Phys, 2007, 135, (2), pp. 700712.
    36. 36)
      • 31. San-Millan, A., Russell, D., Feliu, V., et al: ‘A modified positive velocity and position feedback scheme with delay compensation for improved nanopositioning performance’, Smart Mater. Struct., 2015, 24, (7), p. 075021.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2020.0679
Loading

Related content

content/journals/10.1049/iet-cta.2020.0679
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading