access icon free Interval type-2 fuzzy-model-based fault-tolerant sliding mode tracking control of a quadrotor UAV under actuator saturation

In this study, a fault-tolerant position tracking control of a quadrotor unmanned aerial vehicle (UAV) is addressed by proposing a model reference interval type-2 (IT-2) fuzzy-model-based sliding mode tracking control methodology. Considering the underactuated characteristic of the quadrotor UAV, first, the authors separate the overall dynamics of the quadrotor into the attitude, altitude, and position subsystems. Moreover, each of them is represented via IT-2 fuzzy model to deal with uncertainties of its membership functions. After then, a linear reference model supposed to be tracked by each subsystem is designed, on which each tracking error dynamics is derived. Given the tracking error dynamics and additive actuator faults, an IT-2 integral fuzzy sliding surface is proposed to enhance the robust tracking performance of the entire system. As a result, a linear matrix inequality-based sufficient condition is derived to guarantee the asymptotic stabilisation as well as satisfying an tracking performance. Furthermore, a reachability condition of the designed sliding surface is also proposed. Finally, the authors provide design examples to demonstrate the effectiveness of the proposed position tracking control methodology.

Inspec keywords: Lyapunov methods; asymptotic stability; control system synthesis; uncertain systems; actuators; variable structure systems; robust control; fuzzy set theory; motion control; position control; autonomous aerial vehicles; adaptive control; fuzzy control; tracking; stability; linear matrix inequalities; nonlinear control systems

Other keywords: fault-tolerant position tracking control; IT-2 integral fuzzy sliding surface; interval type-2 fuzzy-model-based fault-tolerant sliding mode tracking control; position tracking control methodology; IT-2 fuzzy model; tracking error dynamics; quadrotor UAV; mode tracking control methodology; model reference interval type-2

Subjects: Multivariable control systems; Fuzzy control; Control system analysis and synthesis methods; Spatial variables control; Algebra; Mobile robots; Nonlinear control systems; Aerospace control; Combinatorial mathematics; Self-adjusting control systems; Stability in control theory

References

    1. 1)
      • 22. Kim, H.S., Park, J.B., Joo, Y.H.: ‘A fuzzy lyapunov—krasovskii functional approach to sampled-data output-feedback stabilisation of polynomial fuzzy systems’, IEEE Trans. Fuzzy Syst., 2018, 26, (1), pp. 366373.
    2. 2)
      • 25. Mansouri, B., Manamanni, N, Guelton, K., et al: ‘Output feedback LMI tracking control conditions with H criterion for uncertain and disturbed T–S models’, Inf. Sci., 2009, 179, (4), pp. 446457.
    3. 3)
      • 8. Zhao, B., Xian, B., Zhang, Y., et al: ‘Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 28912902.
    4. 4)
      • 30. Han, C., Zhang, G., Wu, L., et al: ‘Sliding mode control of T–S fuzzy descriptor systems with time-delay’, J. Franklin Inst., 2012, 349, pp. 14301444.
    5. 5)
      • 1. Mahony, R., Kumar, V., Corke, P.: ‘Multirotor aerial vehicles: modeling, estimation, and control of quadrotor’, IEEE Robot. Autom. Mag., 2012, 19, (3), pp. 2032.
    6. 6)
      • 27. Lam, H.K.: ‘Satabilization of nonlinear systems using sampled-data output feedback fuzzy controller based on polynomial-fuzzy-model-based control approach’, IEEE Trans. System Man Cybern., 2012, 42, (1), pp. 258267.
    7. 7)
      • 14. Mao, X., Zhang, H., Han, D.: ‘T–S fuzzy control for a quadrotor UAV’. Proc. Chinese Cont. Conf., Hangzhou, China, 2015, 2015, pp. 36173622.
    8. 8)
      • 39. Petersen, I.R.: ‘A stabilisation algorithm for a class of uncertain linear systems’, Syst. Control Lett., 1987, 8, pp. 351357.
    9. 9)
      • 38. Gao, Z., Shi, X., Ding, S.X.: ‘Fuzzy state/disturbance observer design for T–S fuzzy systems with application to sensor fault estimation’, IEEE Trans. System Man Cybern. Part b, Cybern., 2008, 38, (3), pp. 875880.
    10. 10)
      • 2. Tian, X., Song, Z., Jiang, B., et al: ‘HiQuadLoc: a RSS fingerprinting based indoor localization system for quadrotors’, IEEE Trans. Mob. Comput., 2017, 16, (9), pp. 25452559.
    11. 11)
      • 5. Khatoon, S., Gupta, D., Das, L.K.: ‘PID & LQR control for a quadrotor: modeling and simulation’. Proc. Int. Conf. Adv. Comp., Comm., Info., New Delhi, India, September 2014, pp. 796802.
    12. 12)
      • 24. Tseng, C.S., Chen, B.S.: ‘H decentralized fuzzy model reference tracking control design for nonlinear interconnected systems’, IEEE Trans. Fuzzy Syst., 2001, 9, (6), pp. 795809.
    13. 13)
      • 3. Park, J., Kim, Y.: ‘Collision avoidance for quadrotor using stereo vision depth maps’, IEEE Trans. Aerosp. Electron. Syst., 2015, 51, (4), pp. 32263241.
    14. 14)
      • 7. Chen, F., Jiang, R., Zhang, K., et al: ‘Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV’, IEEE Trans. Ind. Electron., 2016, 63, (8), pp. 50445056.
    15. 15)
      • 20. Löfberg, J.: ‘YALMIP: a toolbox for modeling and optimization in MATLAB’. Proc. CACSD Conf., Taipei, Taiwan, 2004, pp. 284289.
    16. 16)
      • 13. Rabhi, A., Chadli, M., Pegard, C.: ‘Robust fuzzy control fo stabilisation of a quadrotor’. Proc. Int. Conf. Adv. Robt., Tallinn, Estonia, June 2011, 2011, pp. 471475.
    17. 17)
      • 28. Kim, H.S., Park, J.B., Joo, Y.H.: ‘Decentralized sampled-data tracking control of large-scale fuzzy systems: an exact discretization approach’, IEEE Access, 2017, 5, pp. 1266812681.
    18. 18)
      • 21. Andersen, E.D., Andersen, K.D.: ‘The mosek interior point optimizer for linear programming: an implementation of the homogeneous algorithm’, in ‘high performance optimization’ (Springer, Boston, 2000), pp. 197232.
    19. 19)
      • 19. Takagi, T., Sugeno, M.: ‘Fuzzy identification of systems and its applications to modeling and control’, IEEE Trans. System Man Cybern., 1985, SMC-15, (1), pp. 116132.
    20. 20)
      • 11. Rotondo, D., Nejjari, F., Puig, V.: ‘Robust quasi-LPV model reference FTC of a quadrotor UAV subject to actuator faults’, Int. J. Appl. Math. Comput. Sci., 2015, 25, (1), pp. 722.
    21. 21)
      • 4. Li, J., Li, Y.: ‘Dynamic analysis and PID control for a quadrotor’. Proc. Int. Conf. Mech. Autom., Beijing, China, August 2011, 2011, pp. 573578.
    22. 22)
      • 36. Hwang, S., Park, J.B., Joo, Y.H.: ‘Disturbance observer-based integral fuzzy sliding-mode control and its application to wind turbine system’, IET Control Theory Appl., 2019, 13, (12), pp. 18911900.
    23. 23)
      • 9. Dydek, Z.W., annaswamy, A.M., Lavretsky, E.: ‘Adaptive control of quadrotor UAVs: a design trade study with flight evaluations’, IEEE Trans. Control Syst. Technol., 2013, 21, (4), pp. 14001406.
    24. 24)
      • 18. Kim, H.S., Park, J.B., Joo, Y.H.: ‘A systematic approach to fuzzy-model-based robust H control design for a quadrotor UAV under imperfect premise matching’, Int. J. Fuzzy Syst., 2017, 19, (4), pp. 12271237.
    25. 25)
      • 34. Lam, H.K., Li, H., Deters, C., et al: ‘Control design for interval type-2 fuzzy systems under imperfect premise matching’, IEEE Trans. Ind. Electron., 2014, 61, (2), pp. 956968.
    26. 26)
      • 41. Goyal, J.K., Kamal, S., Patel, R.B., et al: ‘Higher order sliding mode control-based finite-time constrained stabilization’, IEEE Trans. Circuits Syst. II: Express Briefs, 2020, 67, (2), pp. 295299.
    27. 27)
      • 6. Lu, H., Liu, C., Coombes, M., et al: ‘Online optimisation-based backstepping control design with application to quadrotor’, IET Control Theory Appl., 2016, 10, (14), pp. 16011611.
    28. 28)
      • 12. Lee, H., Kim, H.J.: ‘Robust control of a quadrotor using takagi-sugeno fuzzy model and an LMI approach’. Proc. Int. Conf. Cont., Autm., Syst., Gyeonggi-do, Korea, October 2014, 2014, pp. 370374.
    29. 29)
      • 40. Hu, Q.L.: ‘Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilised flexible spaceraft with actuator saturation limits’, Nonlinear Dyn., 2009, 55, (4), pp. 301321.
    30. 30)
      • 17. Kim, D.W.: ‘Fuzzy model-based control of a quadrotor’, Fuzzy Sets Syst., 2019, 371, pp. 136147.
    31. 31)
      • 32. Utkin, V., Shi, J.: ‘Integral sliding mode in systems operating under uncertainty conditions’. Proc. IEEE. Int. Conf. Decision and Control, Kobe, Japan, December 1996, pp. 45914596.
    32. 32)
      • 23. Kim, H.J., Park, J.B., Joo, Y.H.: ‘Decentralized H sampled-data fuzzy filter for nonlinear interconnected oscillating systems with uncertain interconnections’, IEEE Trans. Fuzzy Syst., 2020, 28, (3), pp. 487498.
    33. 33)
      • 16. Sun, M., Liu, J., Wang, H., et al: ‘Robust fuzzy tracking control of a quad-rotor unmanned aerial vehicle based on sector linearizaztion and interval matrix approaches’, ISA Trans., 2018, 80, p. 336-349.
    34. 34)
      • 31. Gao, Q., Feng, G., Liu, L., et al: ‘Robust H control for stochastic T–S fuzzy systems via integral sliding-mode approach’, IEEE Trans. Fuzzy Syst., 2014, 22, (4), pp. 870881.
    35. 35)
      • 10. Izaguirre-Espinosa, C., Munoz-Vazquez, A.J., Sanchez-Orta, A., et al: ‘Attitude control of quadrotors based on fractional sliding modes: theory and experiments’, IET Control Theory Appl., 2016, 10, (7), pp. 825832.
    36. 36)
      • 33. Li, H, Sun, M., Shi, P., et al: ‘Control design of interval type-2 fuzzy systems with actuator fault: sampled-data control approach’, Inf. Sci., 2015, 32, pp. 113.
    37. 37)
      • 29. Xiao, B., Lam, H.K., Yu, Y., et al: ‘Sampled-data output-feedback tracking control for interval type-2 polynomial fuzzy systems’, IEEE Trans. Fuzzy Syst., 2020, 28, (3), pp. 424433.
    38. 38)
      • 15. Yacef, F., Bouhali, O., Khebbache, H., et al: ‘Takagi–sugeno model for quadrotor modelling and control using nonlinear state feedback controller’, Int. J. Control Theory Comput. Model., 2012, 2, (3), pp. 924.
    39. 39)
      • 35. Li, H., Yu, J., Hilton, C., et al: ‘Adaptive sliding-mode control for nonlinear active suspension vehicle systems using T–S fuzzy approach’, IEEE Trans. Ind. Electron., 2013, 60, (8), pp. 33283338.
    40. 40)
      • 37. Zhu, Z., Xia, Y., Fu, M.: ‘Adaptive sliding mode control for attitude stabilisation with actuator saturation’, IEEE Trans. Ind. Electron., 2011, 58, (10), pp. 48984907.
    41. 41)
      • 26. Lam, H.K., Seneviratne, L.D.: ‘Tracking control of sampled-data fuzzy-model-based control systems’, IET Control Theory Appl., 2009, 3, (1), pp. 5667.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2020.0521
Loading

Related content

content/journals/10.1049/iet-cta.2020.0521
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading