access icon free Sideslip angle estimation of ground vehicles: a comparative study

Vehicle sideslip angle is a major indicator of dynamics stability for ground vehicles; but it is immeasurable with commercially-available sensors. Sideslip angle estimation has been the focus of intensive research in past decades, resulting in a rich library of related literature. This study presents a comprehensive evaluation of state-of-the-art sideslip angle estimation methods, with the primary goal of quantitatively revealing their strengths and limitations. These include kinematics-, dynamics- and neural network-based estimators. A hardware-in-loop system is purposely established to examine their performance under four typical manoeuvres. The results show that the dynamics-based estimators are suitable at low vehicle velocities when tires operate in the linear region. In contrast, the kinematics-based methods yield superior estimation performance at high vehicle velocities, and the inclusion of the dual GPS receivers is beneficial even when there is large disturbance to the steering angle. Of utmost importance, it is experimentally manifested that the neural network-based estimator can perform well in all manoeuvres once the training datasets are properly selected.

Inspec keywords: steering systems; kinematics; tyres; stability; mechanical engineering computing; Global Positioning System; neural nets; road vehicles; vehicle dynamics

Other keywords: vehicle sideslip angle; sideslip angle estimation; vehicle tires; neural network-based estimator; vehicle velocities; dynamics stability; dual GPS receivers; ground vehicles; steering angle; kinematics-based methods; dynamics-based estimators; hardware-in-loop system

Subjects: Civil and mechanical engineering computing; Neural nets; Mechanical engineering applications of IT; Vehicle mechanics

References

    1. 1)
      • 8. Su, W., Rahimi-Eichi, H., Zeng, W., et al: ‘A survey on the electrification of transportation in a smart grid environment’, IEEE Trans. Ind. Inf., 2012, 8, (1), pp. 110.
    2. 2)
      • 27. Singh, K.B., Arat, M.A., Taheri, S.: ‘Literature review and fundamental approaches for vehicle and tire state estimation*’, Veh. Syst. Dyn., 2019, 57, (11), pp. 16431665.
    3. 3)
      • 63. Singh, K.B.: ‘Vehicle sideslip angle estimation based on tire model adaptation’, Electronics, 2019, 8, (2), p. 199.
    4. 4)
      • 5. Zhai, L., Sun, T., Wang, J.: ‘Electronic stability control based on motor driving and braking torque distribution for a four in-wheel motor drive electric vehicle’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 47264739.
    5. 5)
      • 48. Jin, X., Yin, G.: ‘Estimation of lateral tire-road forces and sideslip angle for electric vehicles using interacting multiple model filter approach’, J. Franklin Instit. Eng. Appl. Math., 2015, 352, (2), pp. 686707.
    6. 6)
      • 2. Cao, J., Liu, H., Li, P., et al: ‘State of the art in vehicle active suspension adaptive control systems based on intelligent methodologies’, IEEE Trans. Intell. Transp. Syst., 2008, 9, (3), pp. 392405.
    7. 7)
      • 87. Tanelli, M., Piroddi, L., Savaresi, S.M.: ‘Real-time identification of tire-road friction conditions’, IET Control Theory Appl., 2009, 3, (7), pp. 891906.
    8. 8)
      • 72. Zhang, H., Huang, X., Wang, J., et al: ‘Robust energy-to-peak sideslip angle estimation with applications to ground vehicles’, Mechatronics, 2015, 30, pp. 338347.
    9. 9)
      • 28. Guo, H., Chen, H., Cao, D., et al: ‘Design of a reduced-order non-linear observer for vehicle velocities estimation’, IET Control Theory Appl., 2013, 7, (17), pp. 20562068.
    10. 10)
      • 93. Miao, P., Liu, G., Zhang, D., et al: ‘Sideslip angle soft-sensor based on neural network left inversion for multi-wheel independently driven electric vehicles’. Proc. of the 2014 Int. Joint Conf. on Neural Networks, Beijing, People's Republic of China, 2014.
    11. 11)
      • 75. Chen, T., Chen, L., Xu, X., et al: ‘Reliable sideslip angle estimation of four-wheel independent drive electric vehicle by information iteration and fusion’, Math. Probl. Eng., 2018, (pt. 4), 114.
    12. 12)
      • 3. Falcone, P., Borrelli, F., Asgari, J., et al: ‘Predictive active steering control for autonomous vehicle systems’, IEEE Trans. Control Syst. Technol., 2007, 15, (3), pp. 566580.
    13. 13)
      • 79. Solmaz, S., Baslamisli, S.C.: ‘Simultaneous estimation of road friction and sideslip angle based on switched multiple non-linear observers’, IET Control Theory Appl., 2012, 6, (14), pp. 22352247.
    14. 14)
      • 59. Doumiati, M., Victorino, A., Charara, A., et al: ‘Unscented Kalman filter for real-time vehicle lateral tire forces and sideslip angle estimation’. 2009 IEEE Intelligent Vehicles Symp., Xi'an, People's Republic of China, 2009, vol. 1 and 2.
    15. 15)
      • 89. Hideaki Sasaki, T.N.: ‘A side-slip angle estimation using neural network for a wheeled vehicle’. SAE 2000 World Congress, Detroit, USA, 2000.
    16. 16)
      • 60. Doumiati, M., Victorino, A.C., Charara, A., et al: ‘Onboard real-time estimation of vehicle lateral tire-road forces and sideslip angle’, IEEE-ASME Trans. Mechatron., 2011, 16, (4), pp. 601614.
    17. 17)
      • 35. Leung, K.T., Whidborne, J.F., Purdy, D., et al: ‘Road vehicle state estimation using low-cost Gps/Ins’, Mech. Syst. Signal Process., 2011, 25, (6), pp. 19882004.
    18. 18)
      • 44. Nam, K., Fujimoto, H., Hori, Y.: ‘Lateral stability control of in-wheel-motor-driven electric vehicles based on sideslip angle estimation using lateral tire force sensors’, IEEE Trans. Veh. Technol., 2012, 61, (5), pp. 19721985.
    19. 19)
      • 77. Strano, S., Terzo, M.: ‘Vehicle sideslip angle estimation via a riccati equation based nonlinear filter’, Meccanica., 2017, 52, (15), pp. 35133529.
    20. 20)
      • 67. Grip, H.F., Imsland, L., Johansen, T.A., et al: ‘Nonlinear vehicle side-slip estimation with friction adaptation’, Automatica, 2008, 44, (3), pp. 611622.
    21. 21)
      • 51. Ahangarnejad, A.H., Baslamisli, S.C.: ‘Adap-tyre: DEKF filtering for vehicle state estimation based on tyre parameter adaptation’, Int. J. Veh. Des., 2016, 71, (1–4), pp. 5274.
    22. 22)
      • 10. Shuai, Z., Zhang, H., Wang, J., et al: ‘Combined AFS and DYC control of four-wheel-independent-drive electric vehicles over can network with time-varying delays’, IEEE Trans. Veh. Technol., 2014, 63, (2), pp. 591602.
    23. 23)
      • 85. Madhusudhanan, A.K., Corno, M., Holweg, E.: ‘Vehicle sideslip estimation using tyre force measurements’. 2015 23rd Mediterranean Conf. on Control and Automation, Torremolinos, Spain, 2015.
    24. 24)
      • 43. Doumiati, M., Victorino, A., Charara, A., et al: ‘A method to estimate the lateral tire force and the sideslip angle of a vehicle: experimental validation’. 2010 American Control Conf., Baltimore, Maryland, USA, 2010.
    25. 25)
      • 58. Ma, B., Liu, Y., Gao, Y., et al: ‘Estimation of vehicle sideslip angle based on steering torque’, Int. J. Adv. Manuf. Technol., 2018, 94, (9–12), pp. 32293237.
    26. 26)
      • 13. Zhang, H., Wang, J.: ‘Vehicle lateral dynamics control through AFS/DYC and robust gain-scheduling approach’, IEEE Trans. Veh. Technol., 2016, 65, (1), pp. 489494.
    27. 27)
      • 21. Zhang, J., Wang, F.-Y., Wang, K., et al: ‘Data-driven intelligent transportation systems: a survey’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (4), pp. 16241639.
    28. 28)
      • 65. Stephant, J., Charara, A., Meizel, D.: ‘Evaluation of a sliding mode observer for vehicle sideslip angle’, Control Eng. Pract., 2007, 15, (7), pp. 803812.
    29. 29)
      • 94. Melzi, S., Resta, F., Sabbioni, E.: ‘Vehicle sideslip angle estimation through neural networks: application to numerical data’, 2006.
    30. 30)
      • 68. Ding, N., Chen, W., Zhang, Y., et al: ‘An extended luenberger observer for estimation of vehicle sideslip angle and road friction’, Int. J. Veh. Des., 2014, 66, (4), pp. 385414.
    31. 31)
      • 9. Hannan, M.A., Azidin, F.A., Mohamed, A.: ‘Hybrid electric vehicles and their challenges: a review’, Renew. Sustain. Energy Rev., 2014, 29, pp. 135150.
    32. 32)
      • 100. Chen, J., Song, J., Li, L., et al: ‘Ukf-based adaptive variable structure observer for vehicle sideslip with dynamic correction’, IET Control Theory Appl., 2016, 10, (14), pp. 16411652.
    33. 33)
      • 32. Rigelsford, J.: ‘Automotive control systems: for engine, driveline and vehicle’, Sens. Rev., 2004, 24, (4), pp. 395395.
    34. 34)
      • 92. Torben Gräber, S.L., Unterreiner, M., Schramm, D.: ‘A hybrid approach to side-slip angle estimation with recurrent neural networks and kinematic vehicle models’, IEEE Trans. Intell. Veh., 2019, 2018, pp. 3947.
    35. 35)
      • 96. Bonfitto, A., Feraco, S., Tonoli, A., et al: ‘Combined regression and classification artificial neural networks for sideslip angle estimation and road condition identification’, Veh. Syst. Dyn., 2019, (4), pp. 122.
    36. 36)
      • 61. Chen, J., Sun, X., Chen, L., et al: ‘Estimation of vehicle sideslip angle using strong tracking srukf’. Int. Conf. Machinery, Electronics and Control Simulation, Jinzhou, People's Republic of China, 2014.
    37. 37)
      • 74. Chen, T., Chen, L., Cai, Y., et al: ‘Robust sideslip angle observer with regional stability constraint for an uncertain singular intelligent vehicle system’, IET Control Theory Appl., 2018, 12, (13), pp. 18021811.
    38. 38)
      • 71. Zhang, B., Du, H., Lam, J., et al: ‘A novel observer design for simultaneous estimation of vehicle steering angle and sideslip angle’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 43574366.
    39. 39)
      • 15. Bevly, D.M.: ‘Global positioning system (GPS): a low-cost velocity sensor for correcting inertial sensor errors on ground vehicles’, J. Dyn. Syst. Meas. Control-Trans. Asme, 2004, 126, (2), pp. 255264.
    40. 40)
      • 38. Guo, J., Luo, Y., Li, K., et al: ‘Coordinated path-following and direct yaw-moment control of autonomous electric vehicles with sideslip angle estimation’, Mech. Syst. Signal Process., 2018, 105, pp. 183199.
    41. 41)
      • 12. Nam, K., Oh, S., Fujimoto, H., et al: ‘Estimation of sideslip and roll angles of electric vehicles using lateral tire force sensors through RLS and Kalman filter approaches’, IEEE Trans. Ind. Electron., 2013, 60, (3), pp. 9881000.
    42. 42)
      • 76. Chen, W., Tan, D., Zhao, L.: ‘Vehicle sideslip angle and road friction estimation using online gradient descent algorithm’, IEEE Trans. Veh. Technol., 2018, 67, (12), pp. 1147511485.
    43. 43)
      • 69. Gao, X., Yu, Z., Neubeck, J., et al: ‘Sideslip angle estimation based on input-output linearisation with tire-road friction adaptation’, Veh. Syst. Dyn., 2010, 48, (2), pp. 217234.
    44. 44)
      • 80. Fukada, Y.: ‘Slip-angle estimation for vehicle stability control’, Veh. Syst. Dyn., 1999, 32, (4–5), pp. 375388.
    45. 45)
      • 101. Liu, J., Wang, Z., Zhang, L.: ‘A time-delay neural network of sideslip angle estimation for in-wheel motor drive electric vehicles’. 2020 IEEE 91st Vehicular Technology Conf. (VTC2020-Spring), Antwerp, Belgium, 2020.
    46. 46)
      • 70. Ma, Y., Guo, H., Wang, F., et al: ‘An modular sideslip angle and road grade estimation scheme for four-wheel drive vehicles’. Proc. of the 35th Chinese Control Conf. 2016, Danyang, People's Republic of China, 2016.
    47. 47)
      • 24. Leung, K.T., Whidborne, J.F., Purdy, D., et al: ‘A review of ground vehicle dynamic state estimations utilising Gps/Ins’, Veh. Syst. Dyn., 2011, 49, (1–2), pp. 2958.
    48. 48)
      • 19. Melzi, S., Sabbioni, E.: ‘On the vehicle sideslip angle estimation through neural networks: numerical and experimental results’, Mech. Syst. Signal Process., 2011, 25, (6), pp. 20052019.
    49. 49)
      • 64. Strano, S., Terzo, M.: ‘Constrained nonlinear filter for vehicle sideslip angle estimation with no a priori knowledge of tyre characteristics’, Control Eng. Pract., 2018, 71, pp. 1017.
    50. 50)
      • 81. Cheli, F., Sabbioni, E., Pesce, M., et al: ‘A methodology for vehicle sideslip angle identification: comparison with experimental data’, Veh. Syst. Dyn., 2007, 45, (6), pp. 549563.
    51. 51)
      • 39. Yoon, J.-H., Peng, H.: ‘Robust vehicle sideslip angle estimation through a disturbance rejection filter that integrates a magnetometer with Gps’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (1), pp. 191204.
    52. 52)
      • 11. Rajamani, R.: ‘Vehicle dynamics and control’ (Springer, USA, 2012, 2nd edn.).
    53. 53)
      • 50. Li, X., Song, X., Chan, C.: ‘Reliable vehicle sideslip angle fusion estimation using low-cost sensors’, Measurement, 2014, 51, pp. 241258.
    54. 54)
      • 37. Bevly, D.M., Gerdes, J.C., Wilson, C.: ‘The use of Gps based velocity measurements for measurement of sideslip and wheel slip’, Veh. Syst. Dyn., 2002, 38, (2), pp. 127147.
    55. 55)
      • 14. Geng, C., Mostefai, L., Denai, M., et al: ‘Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observer’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 14111419.
    56. 56)
      • 45. Stephant, J., Charara, A., Meizel, D.: ‘Virtual sensor: application to vehicle sideslip angle and transversal forces’, IEEE Trans. Ind. Electron., 2004, 51, (2), pp. 278289.
    57. 57)
      • 17. Chen, B.C., Hsieh, F.C.: ‘Sideslip angle estimation using extended Kalman filter’, Veh. Syst. Dyn., 2008, 46, pp. 353364.
    58. 58)
      • 84. Li, J., Zhang, J.: ‘Vehicle sideslip angle estimation based on hybrid Kalman filter’, Math. Probl. Eng., 2016, pp. 110.
    59. 59)
      • 18. Baffet, G., Charara, A., Lechner, D.: ‘Estimation of vehicle sideslip, tire force and wheel cornering stiffness’, Control Eng. Pract., 2009, 17, (11), pp. 12551264.
    60. 60)
      • 26. Jin, X., Yin, G., Chen, N.: ‘Advanced estimation techniques for vehicle system dynamic state: a survey’, Sensors, 2019, 19, (19), p. 4289.
    61. 61)
      • 47. Cheli, F., Ivone, D., Sabbioni, E.: ‘Smart tyre induced benefits in sideslip angle and friction coefficient estimation’, in Sit, E.W. (ed.): ‘Sensors and instrumentation’ (Springer, Switzerland, 2015), vol. 5, pp. 7383.
    62. 62)
      • 55. Morrison, G., Cebon, D.: ‘Sideslip estimation for articulated heavy vehicles at the limits of adhesion’, Veh. Syst. Dyn., 2016, 54, (11), pp. 16011628.
    63. 63)
      • 4. Zhang, H., Wang, J.: ‘Active steering actuator fault detection for an automatically-steered electric ground vehicle’, IEEE Trans. Veh. Technol., 2017, 66, (5), pp. 36853702.
    64. 64)
      • 49. Li, L., Jia, G., Ran, X., et al: ‘A variable structure extended Kalman filter for vehicle sideslip angle estimation on a low friction road’, Veh. Syst. Dyn., 2014, 52, (2), pp. 280308.
    65. 65)
      • 91. Chindamo, D., Gadola, M.: ‘Estimation of vehicle side-slip angle using an artificial neural network’. 2nd Int. Conf. on Mechanical, Aeronautical and Automotive Engineering, Dalian, People's Republic of China, 2018.
    66. 66)
      • 99. Novi, T., Capitani, R., Annicchiarico, C.: ‘An integrated artificial neural network-unscented Kalman filter vehicle sideslip angle estimation based on inertial measurement unit measurements’, Proc. Instit. Mech. Eng. D-J. Autom. Eng., 2019, 233, (7), pp. 18641878.
    67. 67)
      • 78. Sakthivel, R., Mohanapriya, S., Kaviarasan, B., et al: ‘Non-fragile control design and state estimation for vehicle dynamics subject to input delay and actuator faults’, IET Control Theory Appl., 2020, 14, (1), pp. 134144.
    68. 68)
      • 7. Yin, G., Wang, S., Jin, X.: ‘Optimal slip ratio based fuzzy control of acceleration slip regulation for four-wheel independent driving electric vehicles’, Math. Probl. Eng., 2013, (pt.14), pp. 17.
    69. 69)
      • 20. Vargas-Melendez, L., Boada, B.L., Boada, M.J.L., et al: ‘A sensor fusion method based on an integrated neural network and Kalman filter for vehicle roll angle estimation’, Sensors, 2016, 16, (9), p. 1400.
    70. 70)
      • 29. Kim, H.H., Ryu, J.: ‘Sideslip angle estimation considering short-duration longitudinal velocity variation’, Int. J. Autom. Technol., 2011, 12, (4), pp. 545553.
    71. 71)
      • 57. Liao, Y.-W., Borrelli, F.: ‘An adaptive approach to real-time estimation of vehicle sideslip, road bank angles, and sensor bias’, IEEE Trans. Veh. Technol., 2019, 68, (8), pp. 74437454.
    72. 72)
      • 31. Bevly, D.A., Ryu, J., Gerdes, J.C.: ‘Integrating Ins sensors with Gps measurements for continuous estimation of vehicle sideslip, roll, and tire cornering stiffness’, IEEE Trans. Intell. Transp. Syst., 2006, 7, (4), pp. 483493.
    73. 73)
      • 54. Li, X., Chan, C.-Y., Wang, Y.: ‘A reliable fusion methodology for simultaneous estimation of vehicle sideslip and yaw angles’, IEEE Trans. Veh. Technol., 2016, 65, (6), pp. 44404458.
    74. 74)
      • 53. Bechtoff, J., Koenig, L., Isermann, R.: ‘Cornering stiffness and sideslip angle estimation for integrated vehicle dynamics control’, IFAC Papers online, 2016, 49, (11), pp. 297304.
    75. 75)
      • 16. Chindamo, D., Lenzo, B., Gadola, M.: ‘On the vehicle sideslip angle estimation: a literature review of methods, models, and innovations’, Appl. Sci. Basel, 2018, 8, (3), p. 355.
    76. 76)
      • 90. Du, X., Sun, H., Qian, K., et al: ‘A prediction model for vehicle sideslip angle based on neural network’, 2010.
    77. 77)
      • 62. Jia, G., Li, L., Cao, D.: ‘Model-based estimation for vehicle dynamics states at the limit handling’, J. Dyn. Syst. Meas. Control-Trans. ASME, 2015, 137, (10), pp. 18.
    78. 78)
      • 34. Selmanaj, D., Corno, M., Panzani, G., et al: ‘Vehicle sideslip estimation: a kinematic based approach’, Control Eng. Pract., 2017, 67, pp. 112.
    79. 79)
      • 41. Yoon, J.-H., Peng, H.: ‘A cost-effective sideslip estimation method using velocity measurements from two Gps receivers’, IEEE Trans. Veh. Technol., 2014, 63, (6), pp. 25892599.
    80. 80)
      • 66. Chen, Y., Ji, Y., Guo, K.: ‘A reduced-order nonlinear sliding mode observer for vehicle slip angle and tyre forces’, Veh. Syst. Dyn., 2014, 52, (12), pp. 17161728.
    81. 81)
      • 36. Bevly, D.M., Sheridan, R., Gerdes, J.C.: ‘Integrating Ins sensors with Gps velocity measurements for continuous estimation of vehicle sideslip and tire cornering stiffness’. Proc. of the 2001 American Control Conf., Arlington, VA, USA, 2001, vol. 1–6.
    82. 82)
      • 95. De Martino, M., Farroni, F., Pasquino, N., et al: ‘Real-time estimation of the vehicle sideslip angle through regression based on principal component analysis and neural networks’, 2017 IEEE Int. Systems Engineering Symp., Vienna, Austria, 2017.
    83. 83)
      • 40. Yoon, J.H., Li, S.E., Ahn, C.: ‘Estimation of vehicle sideslip angle and tire-road friction coefficient based on magnetometer with Gps’, Int. J. Autom. Technol., 2016, 17, (3), pp. 427435.
    84. 84)
      • 102. Abdul Amir, H.F., Chindamo, D., Gadola, M., et al: ‘Estimation of vehicle side-slip angle using an artificial neural network’. MATEC Web of Conf., Singapore, 2018.
    85. 85)
      • 6. Esmailzadeh, E., Goodarzi, A., Vossoughi, G.R.: ‘Optimal yaw moment control law for improved vehicle handling’, Mechatronics, 2003, 13, (7), pp. 659675.
    86. 86)
      • 1. Veres, S.M., Molnar, L., Lincoln, N.K., et al: ‘Autonomous vehicle control systems – a review of decision making’, Proc. Instit. Mech. Eng. I-J. Syst. Control Eng., 2011, 225, (I2), pp. 155195.
    87. 87)
      • 98. Boada, B.L., Boada, M.J.L., Diaz, V.: ‘Vehicle sideslip angle measurement based on sensor data fusion using an integrated anfis and an unscented Kalman filter algorithm’, Mech. Syst. Signal Process., 2016, 72–73, pp. 832845.
    88. 88)
      • 82. You, S.-H., Hahn, J.-O., Lee, H.: ‘New adaptive approaches to real-time estimation of vehicle sideslip angle’, Control Eng. Pract., 2009, 17, (12), pp. 13671379.
    89. 89)
      • 33. Selmanaj, D., Corno, M., Panzani, G., et al: ‘Robust vehicle sideslip estimation based on kinematic considerations’, IFAC Papers online, 2017, 50, (1), pp. 1485514860.
    90. 90)
      • 56. Chen, T., Chen, L., Xu, X., et al: ‘Estimation of longitudinal force and sideslip angle for intelligent four-wheel independent drive electric vehicles by observer iteration and information fusion’, Sensors, 2018, 18, (4), p. 1268.
    91. 91)
      • 22. Li, S.E., Zheng, Y., Li, K., et al: ‘Dynamical modeling and distributed control of connected and automated vehicles: challenges and opportunities’, IEEE Intell. Transp. Syst. Mag., 2017, 9, (3), pp. 4658.
    92. 92)
      • 88. Kato, M., Isoda, K., Yuasa, H.: ‘Estimation of vehicle side slip angle with artificial neural network’, JSAE Rev., 1994, 15, (1), pp. 7981.
    93. 93)
      • 42. Stéphant, J., Charara, A., Meizel, D.: ‘Vehicle sideslip angle observers’. 2003 European Control Conf. (ECC), Cambridge, UK, 2003.
    94. 94)
      • 83. Zhang, H., Zhang, X., Wang, J.: ‘Robust gain-scheduling energy-to-peak control of vehicle lateral dynamics stabilisation’, Veh. Syst. Dyn., 2014, 52, (3), pp. 309340.
    95. 95)
      • 73. Zhang, H., Zhang, G., Wang, J.: ‘Sideslip angle estimation of an electric ground vehicle via finite-frequency h-infinity approach’, IEEE Trans. Transp. Electrification, 2016, 2, (2), pp. 200209.
    96. 96)
      • 23. Molina-Masegosa, R., Gozalvez, J.: ‘Lte-V for sidelink 5g V2x vehicular communications a new 5g technology for short-range vehicle-to-everything communications’, IEEE Veh. Technol. Mag., 2017, 12, (4), pp. 3039.
    97. 97)
      • 30. Farrelly, J., Wellstead, P.: ‘Estimation of vehicle lateral velocity’. Proc. of the 1996 IEEE Int. Conf. on Control Applications held together with IEEE Int. Symp. on Intelligent Control IEEE Int. Symp. on Computer-Aided Control System Design, Dearborn, MI, USA, 15–18 September 1996.
    98. 98)
      • 46. Gadola, M., Chindamo, D., Romano, M., et al: ‘Development and validation of a Kalman filter-based model for vehicle slip angle estimation’, Veh. Syst. Dyn., 2014, 52, (1), pp. 6884.
    99. 99)
      • 52. Lian, Y.F., Zhao, Y., Hu, L.L., et al: ‘Cornering stiffness and sideslip angle estimation based on simplified lateral dynamic models for four-in-wheel-motor-driven electric vehicles with lateral tire force information’, Int. J. Autom. Technol., 2015, 16, (4), pp. 669683.
    100. 100)
      • 25. Guo, H., Cao, D., Chen, H., et al: ‘Vehicle dynamic state estimation: state of the art schemes and perspectives’, IEEE-Caa J. Autom. Sinica, 2018, 5, (2), pp. 418431.
    101. 101)
      • 86. Madhusudhanan, A.K., Corno, M., Holweg, E.: ‘Vehicle sideslip estimator using load sensing bearings’, Control Eng. Pract., 2016, 54, pp. 4657.
    102. 102)
      • 97. Boada, B.L., Boada, M.J.L., Gauchia, A., et al: ‘Sideslip angle estimator based on anfis for vehicle handling and stability’, J. Mech. Sci. Technol., 2015, 29, (4), pp. 14731481.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2020.0516
Loading

Related content

content/journals/10.1049/iet-cta.2020.0516
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading