access icon free Adaptive non-linear integral sliding mode fault-tolerant control allocation scheme for octorotor UAV system

This study proposes a new active fault-tolerant control (FTC) and fault estimation scheme for a non-linear octorotor system. The proposed method utilises the idea of an online control allocation (CA) scheme to fully engage the rotors redundancy based on the information from the fault estimation unit. The nominal performance is first achieved using non-linear dynamic inversion (NDI) technique and then to incorporate the robustness, an adaptive non-linear sliding mode control is united with a baseline NDI controller. The proposed method is used to attain the desired altitude and attitude tracking control of an octorotor system. Furthermore, to control the un-actuated states (called internal dynamics) of octorotor system, a separate integral sliding mode-based NDI controller is designed that provides the translational axes control by generating the desired roll and pitch commands. Simulations on the non-linear model of octorotor system validate the dominant performance of the proposed scheme compared to the existing methods in the literature.

Inspec keywords: adaptive control; actuators; fault tolerant control; variable structure systems; nonlinear control systems; control system synthesis; aircraft control; autonomous aerial vehicles; stability; attitude control; uncertain systems

Other keywords: separate integral sliding mode-based NDI controller; desired altitude; baseline NDI controller; mode fault-tolerant control allocation scheme; fault estimation scheme; translational axes control; active fault-tolerant control; fault estimation unit; adaptive nonlinear integral; online control allocation scheme; nonlinear dynamic inversion technique; nominal system stability; fault estimation error; attitude tracking control; nonlinear octorotor system; nonlinear model; adaptive integral sliding mode controller; octorotor UAV system

Subjects: Spatial variables control; Nonlinear control systems; Aerospace control; Self-adjusting control systems; Stability in control theory; Mobile robots; Multivariable control systems; Control system analysis and synthesis methods

References

    1. 1)
      • 48. Yeh, F.-K.: ‘Sliding-mode adaptive attitude controller design for spacecrafts with thrusters’, IET Control Theory Appl., 2010, 4, (7), pp. 12541264.
    2. 2)
      • 51. Chen, L., Alwi, H., Edward, C.: ‘Development and evaluation of integral sliding mode fault tolerant control scheme on the reconfigure benchmark’, Int. J. Robust Nonlinear Control, 2019, 29, pp. 53145340.
    3. 3)
      • 25. Ban, W, Youmin, Z: ‘An adaptive fault-tolerant sliding mode control allocation scheme for multirotor helicopter subject to simultaneous actuator faults’, IEEE Trans. Ind. Electron., 2018, 65, pp. 42274236.
    4. 4)
      • 30. Bartolini, G., Punta, E., Zolezzi, T.: ‘Multi-input sliding mode control of nonlinear uncertain affine systems’, Int. J. Control, 2011, 84, pp. 867875.
    5. 5)
      • 21. Fu, C., Tian, Y., Peng, C., et al: ‘Sensor faults tolerance control for a novel multi-rotor aircraft based on sliding mode control’, Proc. Inst. Mech. Eng. G, J. Aerosp. Eng., 2019, 233, (1), pp. 180196.
    6. 6)
      • 63. Ioannou, P.A., Sun, J.: ‘Robust adaptive control’ (Prentice-Hall, Englewood Cliffs, NJ, 1996).
    7. 7)
      • 20. Marks, A., Whidborne, J.F., Yamamoto, I.: ‘Control allocation for fault tolerant control of a vtoloctorotor’. UKACC Int. Conf. on Control, Cardiff, UK, 2012, pp. 357362.
    8. 8)
      • 24. Wang, B., Zhang, Y., Ponsart, J.-C., et al: ‘Fault-tolerant adaptive control allocation for unmanned multirotor helicopter’. IFAC-PapersOnLine, 2017, 50, (1), pp. 52695274.
    9. 9)
      • 26. Ejaz, F., Hamayun, M.T., Hussain, S., et al: ‘An adaptive sliding mode actuator fault tolerant control scheme for octorotor system’, Int. J. Adv. Robot. Syst., 2019, 2019, pp. 112, Available at https://doi.org/10.1177/1729881419832435.
    10. 10)
      • 62. Ekramian, M.: ‘Observer-based controller for Lipschitz nonlinear systems’, Int. J. Syst. Sci., 2017, 48, (16), pp. 34113418.
    11. 11)
      • 12. Saied, M., Lussier, B., Fantoni, I., et al: ‘Fault diagnosis and fault-tolerant control of an octorotor UAV using motors speeds measurements’, IFAC-PapersOnLine, 2017, 50, (1), pp. 52635268, ISSN 2405-8963.
    12. 12)
      • 39. Yadegar, M., Meskin, N., Afshar, A.: ‘Fault-tolerant control of linear systems using adaptive virtual actuator’, Int. J. Control, 2017, 0, pp. 113.
    13. 13)
      • 29. Yan, X.G., Spurgeon, S.K., Zhu, Q., et al: ‘Memoryless variable structure control for affine nonlinear systems using only output information’, Int. J. Robust Nonlinear Control, 2015, 25, pp. 33163329.
    14. 14)
      • 28. Yan, X.G., Spurgeon, S.K., Edwards, C.: ‘Memoryless static output feedback sliding mode control for nonlinear systems with delayed disturbances’, IEEE Trans. Autom. Control, 2014, 59, pp. 19061912.
    15. 15)
      • 10. Giribet, J.I., Pena, R.S., Ghersin, A.S.: ‘Analysis and design of tilted rotor hexacopter for fault tolerant’, IEEE Trans. Aerosp. Electron. Syst., 2016, 52, (4), pp. 15551567.
    16. 16)
      • 41. Sato, M., Peaucelle, D.: ‘Gain-scheduled output-feedback controllers using inexact scheduling parameters for continuous-time LPV systems’, Automatica, 2013, 49, pp. 10191025.
    17. 17)
      • 18. Merheb, A., Bateman, F., Noura, H.: ‘Passive and active fault tolerant control of octorotor UAV using second order sliding mode control’. 2015 IEEE Conf. on Control Applications (CCA), Sydney, NSW, 2015, pp. 19071912, doi: 10.1109/CCA.2015.7320888.
    18. 18)
      • 2. Hashim, H.A., Lewis, F.L.: ‘Nonlinear stochastic estimators on the special Euclidean group SE(3) using uncertain IMU and vision measurements’, IEEE Trans. Syst. Man Cybern., Syst., 2020, pp. 114, doi: 10.1109/TSMC.2020.2980184.
    19. 19)
      • 56. Castanos, F., Fridman, L.: ‘Analysis and design of integral sliding manifolds for system with unmatched perturbations’, IEEE Trans. Autom. Control, 2006, 51, (5), pp. 853858.
    20. 20)
      • 8. Ronald, V.V., Erik, J.V.K, Chu, Q.P.: ‘Stability and robustness analysis and improvements for incremental nonlinear dynamics inversion control’ (American Institute of Aeronautics and Astronautics (AIAA), Kissimmee, Florida, 2018), pp. 117.
    21. 21)
      • 14. Saied, M., Lussier, B., Fantoni, I, et al: ‘Fault tolerant control for multiple successive failures in an octorotor: architecture and experiments’. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Humberg, Germany, 2015, pp. 4045.
    22. 22)
      • 57. Hamayun, M.T., Edwards, C., Alwi, H.: ‘Fault tolerant control schemes using integral sliding modes’ (Springer, Cham, 2016).
    23. 23)
      • 13. Saied, M., Lussier, B., Fantoni, I., et al: ‘Fault diagnosis and fault-tolerant control strategy for rotor failure in an octorotor’. 2015 IEEE Int. Conf. on Robotics and Automation (ICRA), Seattle, WA, 2015, pp. 52665271, doi: 10.1109/ICRA.2015.7139933.
    24. 24)
      • 58. Zhirabok, A.N., Shumsky, A.E., Zuev, A.V.: ‘Sliding mode observers for fault detection in linear dynamic systems’, IFAC-PapersOnLine, 2018, 51, (24), pp. 14031408.
    25. 25)
      • 35. Zhang, Y., Suresh, V.S., Jiang, B, et al: ‘Reconfigurable control allocation against aircraft control effector failures’. 16th IEEE Int. Conf. on Control Applications, Singapore, 2007, pp. 11971202.
    26. 26)
      • 32. Alwi, H., Edwards, C., Tan, C.P.: ‘Fault detection and fault-tolerant control using sliding modes’ (Springer, London, 2011).
    27. 27)
      • 6. Madani, T., Benallegue, A.: ‘Sliding mode observer and backstepping control of quadrotor unmanned aerial vehicles’. American Control Conf., New York, NY, 2007, pp. 58875892.
    28. 28)
      • 64. Pretorius, R., Edward, B.: ‘Design and modelling of a quadrotor helicopter with variable pitch rotors for aggressive manoeuvres’, IFAC Proc., 2014, 47, (3), pp. 1220812213.
    29. 29)
      • 7. Chen, F., Jiang, R., Zhang, K, et al: ‘Robust backstepping sliding mode control and observer-based fault estimation for a quadrotor UAV’, IEEE Trans. Ind. Electron., 2016, 6, (8), pp. 50445056.
    30. 30)
      • 17. Alwi, H., Hamayun, M.T., Edwards, C.: ‘An integral sliding mode fault tolerant control scheme for an octorotor using fixed control allocation’. 13th IEEE Workshop on Variable Structure Systems, Nantes, France, 2014.
    31. 31)
      • 40. Mojtaba, S.M, Galeazi, R.: ‘Reconfigurable control of input affine nonlinear system under actuator fault’, IFAC, 2015, 48, (21), pp. 345352.
    32. 32)
      • 59. Chen, L., Edwards, C., Alwi, H.: ‘Sensor fault estimation using LPV sliding mode observers with erroneous scheduling parameters’, Automatica, 101, 2019, pp. 6677.
    33. 33)
      • 16. Zeghlache, S., Mekki, H., Bouguerra, A., et al: ‘Actuator fault tolerant control using adaptive RBFNN fuzzy sliding mode controller for coaxial octorotor UAV’, ISA Trans., 2018, 80, pp. 267278.
    34. 34)
      • 37. Tao, G.: ‘Direct adaptive actuator failure compensation control: a tutorial’, J. Control Decis., 2014, 1, (1), pp. 75101.
    35. 35)
      • 61. Rajamani, R.: ‘Observers for Lipschitz nonlinear systems’, IEEE Trans. Autom. Control, 1998, 43, (3), pp. 397401.
    36. 36)
      • 4. Bangura, M., Mahony, R.: ‘Real-time model predictive control for quadrotors’. Proc. of 19th IFAC World Congress, Milan, 2014, 47, no. (3), pp. 1177311780.
    37. 37)
      • 65. Hoblit, F.M.: ‘Gust loads on aircraft: concepts and applications’ (American Institute of Aeronautics and Astronautics, AIAA, Reston, VA, 1988).
    38. 38)
      • 43. Witczak, M., Buciakowski, M., Puig, M., et al: ‘An LMI approach to robust fault estimation for a class of nonlinear systems’, Int. J. Robust Nonlinear Control, 2016, 26, (7), pp. 15301548.
    39. 39)
      • 52. Chen, C., Xu, S.S., Liang, Y.W.: ‘Study of nonlinear integral sliding mode fault tolerant control’, IEEE/ASME Trans. Mech., 2016, 21, (2), pp. 11601168.
    40. 40)
      • 60. Li, J., Yang, G.: ‘Fuzzy descriptor sliding mode observer design: a canonical form-based method’, IEEE Trans. Fuzzy Syst., 2020, 28, (9), pp. 20482062, doi: 10.1109/TFUZZ.2019.2930036.
    41. 41)
      • 5. Sharifi, F., Mirzaei, M., Gordon, B.W., et al: ‘Fault tolerant control of a quadrotor UAV using sliding mode control’. Conf. on Control and Fault Tolerant Systems, Nove, France, 2010, pp. 239244.
    42. 42)
      • 22. Alwi, H., Edwards, C.: ‘Fault tolerant control of an octorotor using LPV based sliding mode control allocation’. American Control Conf., Washington, DC, 2013, pp. 65056510.
    43. 43)
      • 9. Uzair, A., Bajodah, A.H.: ‘Robust generalized dynamic inversion quadrotor control’, IFAC, 2017, 20, (1), pp. 81818188.
    44. 44)
      • 50. Errouissi, R., Yang, J., Chen, W.H., et al: ‘Robust nonlinear generalised predictive control for a class of uncertain nonlinear systems via an integral sliding mode approach’, Int. J. Control, 2016, 89, (1), pp. 16981710.
    45. 45)
      • 54. Stewart, G.W.: ‘On scaled projections and pseudoinverses’, Linear Algebra Appl., 1989, 112, pp. 189193.
    46. 46)
      • 45. Nasiri, A., Nguang, S.K., Swain, A., et al: ‘Passive actuator fault tolerant control for a class of MIMO nonlinear systems with uncertainties’, Int. J. Control, 2017, 92, (3), pp. 693704.
    47. 47)
      • 66. Department of Defense Handbook, MIL-HDBK-1797B, Washington, DC: U.S. Department of Defense, Flying Qualities of Piloted Aircraft, 2012.
    48. 48)
      • 55. Alwi, H., Edwards, C.: ‘Fault tolerant control using sliding modes with on-line control allocation’, Automatica, 2008, 44, (7), pp. 18591866.
    49. 49)
      • 34. Johansen, T.A., Fossen, T.I.: ‘Control allocation-a survey’, Automatica, 2013, 49, pp. 10871103.
    50. 50)
      • 53. Liang, Y.W., Xu, S.D., Tsai, C.L.: ‘Study of VSC reliable designs for the class of nonlinear control systems’, IEEE Trans. Ind. Electron., 2007, 15, (2), pp. 332338.
    51. 51)
      • 47. Benosman, M., Lum, K.: ‘Passive actuators’ fault-tolerant control for affine nonlinear systems', IEEE Trans. Control Syst. Technol., 2010, 18, (1), pp. 152163.
    52. 52)
      • 36. Fan, Q., Yang, G.: ‘Adaptive fault-tolerant control for affine non-linear systems based on approximate dynamic programming’, IET Control Theory Appl., 2016, 10, (6), pp. 655663.
    53. 53)
      • 38. Nazari, R., Maria, M., Seron, J.A., et al: ‘Actuator fault tolerant control of systems with polytopic uncertainties using set-based diagnosis and virtual-actuator-based reconfiguration’, Automatica, 2017, 75, pp. 182190.
    54. 54)
      • 49. Li, Y.X., Yang, G.H.: ‘Adaptive integral sliding mode control fault tolerant control for a class of uncertain nonlinear systems’, IET Control Theory Appl., 2018, 12, (13), pp. 18641872.
    55. 55)
      • 1. Das, A., Subbarao, K., Lewis, F.: ‘Dynamic inversion with zero-dynamics stabilisation for quadrotor control’, IET Control Theory Applic., 2009, 3, (3), pp. 303314.
    56. 56)
      • 11. Adhir, V.G., Stoica, A.M.: ‘Integral LQR control of a star-shaped octorotor’, INCAS Bulletin, 2012, 4, (2), pp. 312.
    57. 57)
      • 44. Fan, Q.Y., Yang, G.: ‘Adaptive actorcritic design-based integral sliding-mode control for partially unknown nonlinear systems with input disturbances’, IEEE. Trans. Neural Netw. Learn. Syst., 2016, 27, pp. 165-177.
    58. 58)
      • 31. Ma, H.J., Yang, G.H.: ‘Adaptive logic based switching fault tolerant controller design for nonlinear uncertain systems’, Int. J. Robust Nonlinear Control, 2011, 21, pp. 404428.
    59. 59)
      • 42. Vanek, B., Edelmayer, A., Szabo, Z., et al: ‘Bridging the gap between theory and practice in LPV fault detection for flight control actuators’, Control Eng. Pract., 2014, 31, pp. 171-182.
    60. 60)
      • 46. Han, Z., Zhang, K., Yang, T., et al: ‘Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode’, IET Control Theory Appl., 2016, 10, (16), pp. 19911999.
    61. 61)
      • 19. Merheb, A., Nourra, H., Batemann, F.: ‘Active fault tolerant control of octorotor UAV using dynamic control allocation’. Int. Conf. on Intelligent Unmanned systems, Montreal, Canada, 2014.
    62. 62)
      • 15. Samir, Z, Djamel, S, Kara, K.: ‘Fault tolerant control based on neural network interval type-2 fuzzy sliding mode controller for octorotor UAV’, Front. Comput. Sci., 2016, 10, pp. 657672.
    63. 63)
      • 23. Alwi, H., Edwards, C.: ‘Sliding mode fault tolerant control of an octorotor using LPV based schemes’, IET Control Theory Appl., 2016, 9, (4), pp. 618636.
    64. 64)
      • 3. Hashim, H.A.: ‘Systematic convergence of nonlinear stochastic estimators on the special orthogonal group SO(3)’, Int. J. Robust Nonlinear Control, 2020, 30, pp. 38483870.
    65. 65)
      • 33. Durham, K.A., Bordignon, W., Beck, R.: ‘Aircraft control allocation’ (John Wiley and Sons, Chichester, 2017).
    66. 66)
      • 27. Chen, Y.C., Chang, S.: ‘Output tracking design of affine nonlinear plant via variable structure system’, IEEE Trans. Autom. Control, 1992, 37, pp. 18231828.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2020.0476
Loading

Related content

content/journals/10.1049/iet-cta.2020.0476
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading