Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Affine linear parameter-varying embedding of non-linear models with improved accuracy and minimal overbounding

In this study, automated generation of linear parameter-varying (LPV) state-space models to embed the dynamical behaviour of non-linear systems is considered, focusing on the trade-off between scheduling complexity and model accuracy and the minimisation of the conservativeness of the resulting embedding. The LPV state-space model is synthesised with affine scheduling dependency, while the scheduling variables themselves are non-linear functions of the state and input variables of the original system. The method allows to generate complete or approximative embedding of the non-linear system model and also it can be used to minimise the complexity of existing LPV embeddings. The capabilities of the method are demonstrated on simulation examples and also in an empirical case study where the first-principle motion model of a three degrees of freedom (3DOF) control moment gyroscope is converted by the proposed method to an LPV model with low scheduling complexity. Using the resulting model, a gain-scheduled controller is designed and applied on the gyroscope, demonstrating the efficiency of the developed approach.

References

    1. 1)
      • 13. Zin, A., Sename, O., Gáspár, P., et al: ‘An LPV/H active suspension control for global chassis technology: design and performance analysis’. Proc. of the American Control Conf., Minneapolis, Minnesota, USA, 2006, pp. 29452950.
    2. 2)
      • 2. Hoffmann, C., Werner, H.: ‘A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations’, IEEE Trans. Control Syst. Technol., 2015, 23, (2), pp. 416433.
    3. 3)
      • 1. Rugh, W.J., Shamma, J.S.: ‘Research on gain scheduling’, Automatica, 2000, 36, (10), pp. 14011425.
    4. 4)
      • 8. Zhao, Y., Huang, B., Su, H., et al: ‘Prediction error method for identification of LPV models’, J. Process Control, 2012, 22, (1), pp. 180193.
    5. 5)
      • 5. Goos, J., Pintelon, R.: ‘Continuous-time identification of periodically parameter-varying state space models’, Automatica, 2016, 71, pp. 254263.
    6. 6)
      • 14. Leith, D.J., Leithhead, W.E.: ‘Gain-scheduled nonlinear systems: dynamic analysis by velocity based linearization families’, Int. J. Control, 1998, 70, pp. 289317.
    7. 7)
      • 9. Bachnas, A.A., Tóth, R., Ludlage, J.H.A., et al: ‘A review on data-driven linear parameter-varying modeling approaches: a high-purity distillation column case study’, J. Process Control, 2014, 24, (4), pp. 272285.
    8. 8)
      • 4. Tóth, R., Laurain, V., Gilson, M., et al: ‘Instrumental variable scheme for closed-loop LPV model identification’, Automatica, 2012, 48, (9), pp. 23142320.
    9. 9)
      • 3. Toth, R.: ‘Modeling and identification of linear parameter-varying systems’ (Springer, Germany, 2010).
    10. 10)
      • 33. Barequet, G., Har-Peled, S.: ‘Efficiently approximating the minimum-volume bounding box of a point set in three dimensions’, J. Algorithms, 2001, 38, (1), pp. 91109.
    11. 11)
      • 28. Olver, P.J., Shakiban, C.: ‘Applied linear algebra’ (Prentice-Hall, Englewood Cliffs, NY, 2006).
    12. 12)
      • 14. Leith, D.J., Leithhead, W.E.: ‘Gain-scheduled nonlinear systems: dynamic analysis by velocity based linearization families’, Int. J. Control, 1998, 70, pp. 289317.
    13. 13)
      • 7. Tóth, R., Heuberger, P.S.C., Van den Hof, P.M.J.: ‘Prediction-error identification of LPV systems: present and beyond’ (Springer US, Boston, MA, 2012), pp. 2758.
    14. 14)
      • 32. O'Rourke, J.: ‘Finding minimal enclosing boxes’, Int. J. Comput. Inf. Sci., 1985, 14, (3), pp. 183199.
    15. 15)
      • 20. Siraj, M.M., Tóth, R., Weiland, S.: ‘Joint order and dependency reduction for LPV state-space models’. Proc. of the 51st IEEE conf. on Decision and control, Maui, HI, USA, December 2012, pp. 62916296.
    16. 16)
      • 26. Sadeghzadeh, A.: ‘LMI relaxations for robust gain-scheduled control of uncertain linear parameter varying systems’, IET Control Theory Appl., 2019, 13, (4), pp. 486495.
    17. 17)
      • 43. Sadeghzadeh, A.: ‘Gain-scheduled continuous-time control using polytope-bounded inexact scheduling parameters’, Int. J. Robust Nonlinear Control, 2018, 28, (17), pp. 55575574.
    18. 18)
      • 13. Zin, A., Sename, O., Gáspár, P., et al: ‘An LPV/H active suspension control for global chassis technology: design and performance analysis’. Proc. of the American Control Conf., Minneapolis, Minnesota, USA, 2006, pp. 29452950.
    19. 19)
      • 16. Robles, R., Sala, A., Bernal, M.: ‘Performance-oriented quasi-LPV modeling of nonlinear systems’, Int. J. Robust Nonlinear Control, 2019, 29, (5), pp. 12301248.
    20. 20)
      • 8. Zhao, Y., Huang, B., Su, H., et al: ‘Prediction error method for identification of LPV models’, J. Process Control, 2012, 22, (1), pp. 180193.
    21. 21)
      • 6. Laurain, V., Tóth, R., Zheng, W.-X., et al: ‘Nonparametric identification of LPV models under general noise conditions: An LS-SVM based approach’. Proc. of the 16th IFAC Symposium on System Identification, Brussels Belgium, 2012, pp. 17611766.
    22. 22)
      • 35. Diener, J.: ‘2D minimal bounding box’, 2020. [Online]. Available at https://www.mathworks.com/matlabcentral/fileexchange/31126-2d-minimal-bounding-box.
    23. 23)
      • 23. Caigny, J.D., Camino, J.F., Oliveira, R.C.L.F., et al: ‘Gain-scheduled H control of discrete-time polytopic time-varying systems’. Proc. of the 47th IEEE Conf. on Decision and Control, Haifa, Israel, December 2008, pp. 38723877.
    24. 24)
      • 39. Todd, M.J., Yildirim, E.A.: ‘On khachiyan's algorithm for the computation of minimum-volume enclosing ellipsoids’, Discrete Appl. Math., 2007, 155, (13), pp. 17311744.
    25. 25)
      • 46. Agulhari, C.M., de Oliveira, R.C.L.F., Peres, P.L.D.: ‘Robust LMI parser: a computational package to construct LMI conditions for uncertain systems’. Proc. of the 19th Brazilian Conf. on Automation, Campina Grande, PB, Brazil, 2012, pp. 22982305.
    26. 26)
      • 30. Freeman, H., Shapira, R.: ‘Determining the minimum-area encasing rectangle for an arbitrary closed curve’, Commun. ACM, 1975, 18, (7), pp. 409413.
    27. 27)
      • 15. Schoukens, M., Tóth, R.: ‘Linear parameter varying representation of a class of MIMO nonlinear systems’. Proc. of the 2nd IFAC Workshop on Linear Parameter Varying System, Florianopolis, BrazilSeptember 2018, 51, (26), pp. 9499.
    28. 28)
      • 38. Kumar, P., Yildirim, E.A.: ‘Minimum-volume enclosing ellipsoids and core sets’, J. Optim. Theory Appl., 2005, 126, (1), pp. 121.
    29. 29)
      • 21. Scherer, C.W.: ‘LPV control and full block multipliers’, Automatica, 2001, 37, (3), pp. 361375.
    30. 30)
      • 1. Rugh, W.J., Shamma, J.S.: ‘Research on gain scheduling’, Automatica, 2000, 36, (10), pp. 14011425.
    31. 31)
      • 42. Bloemers, T., Tóth, R.: ‘Equations of motion of a control moment gyroscope’, Eindhoven University of Technology, Tech. Rep., 2019.
    32. 32)
      • 47. MOSEK ApS,: The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 28)., 2015. [Online]. Available at http://docs.mosek.com/7.1/toolbox/index.html.
    33. 33)
      • 19. Hoffmann, C., Werner, H.: ‘Compact LFT-LPV modeling with automated parameterization for efficient LPV controller synthesis’. 2015 American Control Conf. (ACC), Chicago, IL, USA, July 2015, pp. 119124.
    34. 34)
      • 5. Goos, J., Pintelon, R.: ‘Continuous-time identification of periodically parameter-varying state space models’, Automatica, 2016, 71, pp. 254263.
    35. 35)
      • 29. Eckart, C., Young, G.: ‘The approximation of one matrix by another of lower rank’, Psychometrika, 1936, 1, (3), pp. 211218.
    36. 36)
      • 34. Korsawe, J.: ‘Minimal bounding box’, 2020. [Online]. Available at https://www.mathworks.com/matlabcentral/fileexchange/18264-minimal-bounding-box.
    37. 37)
      • 45. Löfberg, J.: ‘YALMIP: a toolbox for modeling and optimization in MATLAB’. Proc. of the IEEE Int. conf. on Rabotics and Automation, New Orleans, LA, USA, 2004, pp. 284289.
    38. 38)
      • 2. Hoffmann, C., Werner, H.: ‘A survey of linear parameter-varying control applications validated by experiments or high-fidelity simulations’, IEEE Trans. Control Syst. Technol., 2015, 23, (2), pp. 416433.
    39. 39)
      • 4. Tóth, R., Laurain, V., Gilson, M., et al: ‘Instrumental variable scheme for closed-loop LPV model identification’, Automatica, 2012, 48, (9), pp. 23142320.
    40. 40)
      • 18. Kwiatkowski, A., Werner, H.: ‘PCA-based parameter set mappings for LPV models with fewer parameters and less overbounding’, IEEE Trans. Control Syst. Technol., 2008, 16, (4), pp. 781788.
    41. 41)
      • 37. Khachiyan, L.G.: ‘Rounding of polytopes in the real number model of computation’, Math. Oper. Res., 1996, 21, (2), pp. 307320.
    42. 42)
      • 44. F. Oliveira, R.C.L., Peres, P.L.D.: ‘Parameter-dependent LMIs in robust analysis: characterization of homogeneous polynomially parameter-dependent solutions via LMI relaxations’, IEEE Trans. Autom. Control, 2007, 52, (7), pp. 13341340.
    43. 43)
      • 25. Sato, M., Peaucelle, D.: ‘Gain-scheduled output-feedback controllers using inexact scheduling parameters for continuous-time LPV systems’, Automatica, 2013, 49, (4), pp. 10191025.
    44. 44)
    45. 45)
      • 31. Toussaint, G.: ‘Solving geometric problems with the rotating calipers’. Proc. of the IEEE Mediterranean Electronical Conf., Athens, Greece, 1983.
    46. 46)
      • 40. Moshtagh, N.: ‘Minimum volume enclosing ellipsoid’, 2020. [Online]. Available at https://www.mathworks.com/matlabcentral/fileexchange/9542-minimum-volume-enclosing-ellipsoid.
    47. 47)
      • 9. Bachnas, A.A., Tóth, R., Ludlage, J.H.A., et al: ‘A review on data-driven linear parameter-varying modeling approaches: a high-purity distillation column case study’, J. Process Control, 2014, 24, (4), pp. 272285.
    48. 48)
      • 41. Hoffmann, C., Werner, H.: ‘LFT-LPV modeling and control of a control moment gyroscope’. Proc. of the 54th IEEE Conf. on Decision and Control, Osaka, Japan, December 2015, pp. 53285333.
    49. 49)
      • 24. Daafouz, J., Bernussou, J., Geromel, J.C.: ‘On inexact LPV control design of continuous-time polytopic systems’, IEEE Trans. Autom. Control, 2008, 53, (7), pp. 16741678.
    50. 50)
      • 22. Hjartarson, A., Seiler, P., Packard, A.: ‘LPVTools: a toolbox for modeling, analysis, and synthesis of parameter varying control systems’. Proc. of the 1st IFAC Workshop on Linear Parameter Varying Systems, Grenoble, France, October 2015, pp. 139145.
    51. 51)
      • 11. Shin, J.Y., Balas, G., Kaya, M.A.: ‘Blending methodology of linear parameter varying control synthesis of F-16 aircraft system’, J. Guid. Control Dyn., 2002, 25, (6), pp. 10401048.
    52. 52)
      • 27. Hanema, J., Lazar, M., Tóth, R.: ‘Heterogeneously parameterized tube model predictive control for LPV systems’, Automatica, 2019, 111, pp. 113.
    53. 53)
      • 36. Kabsch, W.: ‘A solution for the best rotation to relate two sets of vectors’, Acta Crystallogr. Section A, 1976, 32, (5), pp. 922923.
    54. 54)
      • 17. Abbas, H., Tóth, R., Petreczky, M., et al: ‘Embedding of nonlinear systems in a linear parameter-varying representation’. Proc. of the 19th IFAC World Congress 24–29 August 2014, Cape Town, South Africa, 2014, pp. 69076913.
    55. 55)
      • 12. Marcos, A., Balas, G.J.: ‘Development of linear-parameter-varying models for aircraft’, J. Guid., Control Dyn., 2004, 27, (2), pp. 218228.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2020.0474
Loading

Related content

content/journals/10.1049/iet-cta.2020.0474
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address