Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Upper body estimation of muscle forces, muscle states, and joint motion using an extended Kalman filter

This study synthesises modelling techniques and dynamic state estimation techniques for the simultaneous estimation of the muscle states, muscle forces, and joint motion states of a dynamic human arm model. The estimator considers both muscle dynamics and motion dynamics. The arm model has two joints and six muscles and contains dynamics both of the muscles and of the motion. We develop an optimally tuned extended Kalman filter using noisy measurements of joint angles with standard deviation 2.87, of joint velocities with standard deviation 6.9/s, and of muscle activations with standard deviation 10% of their peak values, and then simultaneously estimate joint angles, joint velocities, muscle forces, joint moments, and muscle states. The standard deviations of estimation errors (SDEE) are no more than 0.07° for joint angles, 1/s for joint velocities, 0.6 mm for muscle–tendon lengths, and 0.1 Nm for joint torques. The results are compared with a previously developed static optimisation method, and verify the effectiveness of the proposed estimator in providing lower SDEE for both muscle and motion dynamics of the human arm model compared to the static optimisation method.

References

    1. 1)
      • 28. Mobasser, F., Hashtrudi-Zaad, K.: ‘A method for online estimation of human arm dynamics’. Int. Conf. of the IEEE Engineering in Medicine and Biology Society. (IEEE), New York, NY, USA, 2006, pp. 24122416.
    2. 2)
      • 12. Huxley, H.: ‘The double array of filaments in cross-striated muscle’, J. Biophys. Biochem. Cytology, 1957, 3, (5), p. 631.
    3. 3)
      • 27. Nguyen, T.T., Warner, H., La, H., et al: ‘State estimation for an agonistic-antagonistic muscle system’, Asian J. Control, 2019, 21, (1), pp. 354363.
    4. 4)
      • 34. Freeman, C., Hughes, A.M., Burridge, J., et al: ‘Iterative learning control of FES applied to the upper extremity for rehabilitation’, Control Eng. Pract., 2009, 17, (3), pp. 368381.
    5. 5)
      • 11. Hatze, H.: ‘A complete set of control equations for the human musculo-skeletal system’, J. Biomech., 1977, 10, (11-12), pp. 799805.
    6. 6)
      • 2. Huang, B., Li, Z., Wu, X., et al: ‘Coordination control of a dual-arm exoskeleton robot using human impedance transfer skills’, IEEE Trans. Syst., Man Cybern.: Syst., 2017, 49, (5), pp. 954963.
    7. 7)
      • 33. Blana, D., Kirsch, R.F., Chadwick, E.K.: ‘Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system’, Med. Biol. Eng. Comput., 2009, 47, (5), pp. 533542.
    8. 8)
      • 15. Liu, P., Martel, F., Rancourt, D., et al: ‘Fingertip force estimation from forearm muscle electrical activity’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Florence, Italy, 2014, pp. 20692073, https://link.springer.com/chapter/10.1007/978-3-319-08338-4_85#citeas.
    9. 9)
      • 47. Winter, D.A., Yack, H.J.: ‘EMG profiles during normal human walking: stride-to-stride and inter-subject variability’, Electroencephalogr. Clin. Neurophysiol., 1986, 67, (5), pp. 402411.
    10. 10)
      • 29. Chalasani, P., Wang, L., Yasin, R., et al: ‘Preliminary evaluation of an online estimation method for organ geometry and tissue stiffness’, IEEE Robot. Autom. Lett., 2018, 3, (3), pp. 18161823.
    11. 11)
      • 35. Jagodnik, K.M., van den Bogert, A.J.: ‘Optimization and evaluation of a proportional derivative controller for planar arm movement’, J. Biomech., 2010, 43, (6), pp. 10861091.
    12. 12)
      • 42. Röhrle, H., Scholten, R., Sigolotto, C., et al: ‘Joint forces in the human pelvis-leg skeleton during walking’, J. Biomech., 1984, 17, (6), pp. 409424.
    13. 13)
      • 40. Khalil, H.K., Grizzle, J.W.: ‘Nonlinear systems’ (Prentice Hall Upper Saddle River, NJ, 2002).
    14. 14)
      • 38. Hill, A.: ‘The heat of shortening and the dynamic constants of muscle’, Proc. R. Soc. London B: Biol. Sci., 1938, 126, (843), pp. 136195.
    15. 15)
      • 39. Katz, B.: ‘The relation between force and speed in muscular contraction’, J. Phys., 1939, 96, (1), 4564.
    16. 16)
      • 50. Richter, H., Warner, H.: ‘Stable nonlinear control of an agonist-antagonist muscle-driven system’, IFAC-PapersOnLine, 2017, 50, (1), pp. 71997204.
    17. 17)
      • 6. Babiarz, A., Bieda, R., Jaskot, K., et al: ‘The dynamics of the human arm with an observer for the capture of body motion parameters’, Bull. Pol. Acad. Sci.: Tech. Sci., 2013, 61, (4), pp. 955971.
    18. 18)
      • 22. Han, J., Ding, Q., Xiong, A., et al: ‘A state-space EMG model for the estimation of continuous joint movements’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 42674275.
    19. 19)
      • 18. Ngeo, J.G., Tamei, T., Shibata, T.: ‘Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model’, J. Neuroengineering Rehabil., 2014, 11, (1), p. 122.
    20. 20)
      • 13. Zajac, F.: ‘Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control’, Crit. Rev. Biomed. Eng., 1988, 17, (4), pp. 359411.
    21. 21)
      • 37. Winter, D.A.: ‘Biomechanics and motor control of human movement’ (John Wiley & Sons, Hoboken, NJ, USA, 2009).
    22. 22)
      • 24. Potluri, C., Anugolu, M., Naidu, D.S., et al: ‘Real-time embedded frame work for sEMG skeletal muscle force estimation and LQG control algorithms for smart upper extremity prostheses’, Eng. Appl. Artif. Intell., 2015, 46, pp. 6781.
    23. 23)
      • 44. Quan, W., Wang, H., Liu, D.: ‘A multifunctional joint angle sensor with measurement adaptability’, Sensors, 2013, 13, (11), pp. 1527415289.
    24. 24)
      • 14. Winters, J.M.: ‘Hill-based muscle models: a systems engineering perspective’, in ‘Multiple muscle systems’ (Springer, Springer, NY, USA, 1990), pp. 6993.
    25. 25)
      • 46. Lanshammar, H.: ‘On precision limits for derivatives numerically calculated from noisy data’, J. Biomech., 1982, 15, (6), pp. 459470.
    26. 26)
      • 45. Merriaux, P., Dupuis, Y., Boutteau, R., et al: ‘A study of vicon system positioning performance’, Sensors, 2017, 17, (7), p. 1591.
    27. 27)
      • 43. Dul, J., Townsend, M., Shiavi, R., et al: ‘Muscular synergism-I. on criteria for load sharing between synergistic muscles’, J. Biomech., 1984, 17, (9), pp. 663673.
    28. 28)
      • 21. Bélaise, C., Dal-Maso, F., Michaud, B., et al: ‘An EMG-marker tracking optimisation method for estimating muscle forces’, Multibody Syst. Dyn., 2018, 42, (2), pp. 119143.
    29. 29)
      • 23. Coronado, L.E., Chavez-Romero, R., Maya, M., et al: ‘American Society of Mechanical Engineers. ‘combining genetic algorithms and extended Kalman filter to estimate ankle's muscle-tendon parameters’. ASME Dynamic Systems and Control Conf., Columbus, OH, USA, 2015.
    30. 30)
      • 41. Rasmussen, J., Damsgaard, M., Voigt, M.: ‘Muscle recruitment by the min/max criterion - a comparative numerical study’, J. Biomech., 2001, 34, (3), pp. 409415.
    31. 31)
      • 17. Lin, Y.C., Walter, J.P., Banks, S.A., et al: ‘Simultaneous prediction of muscle and contact forces in the knee during gait’, J. Biomech., 2010, 43, (5), pp. 945952.
    32. 32)
      • 16. Buchanan, T.S., Lloyd, D.G., Manal, K., et al: ‘Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command’, J. Appl. Biomech., 2004, 20, (4), pp. 367395.
    33. 33)
      • 52. Lempereur, M., Brochard, S., Leboeuf, F., et al: ‘Validity and reliability of 3D marker based scapular motion analysis: a systematic review’, J. Biomech., 2014, 47, (10), pp. 22192230.
    34. 34)
      • 32. Rahman, T., Sample, W., Jayakumar, S., et al: ‘Passive exoskeletons for assisting limb movement’, J. Rehabil. Res. Dev., 2006, 43, (5), p. 583.
    35. 35)
      • 26. Jezernik, K., Curk, B., Harnik, J.: ‘Observer-based sliding mode control of a robotic manipulator’, Robotica, 1994, 12, (5), pp. 443448.
    36. 36)
      • 9. Schaechter, D.B., Levinson, D.A., Kane, T.R.: ‘Autolev user's manual’ (Online Dynamics, Sunnyvale, CA, USA, 1988).
    37. 37)
      • 10. Yucesoy, C.A., Koopman, B.H., Huijing, P.A., et al: ‘Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh model’, J. Biomech., 2002, 35, (9), pp. 12531262.
    38. 38)
      • 5. Yamasaki, T., Idehara, K., Xin, X.: ‘Estimation of muscle activity using higher-order derivatives, static optimization, and forward-inverse dynamics’, J. Biomech., 2016, 49, (10), pp. 20152022.
    39. 39)
      • 1. Hou, Y., Zurada, J.M., Karwowski, W., et al: ‘Estimation of the dynamic spinal forces using a recurrent fuzzy neural network’, IEEE Trans. Syst., Man Cybern., Part B (Cybern.), 2007, 37, (1), pp. 100109.
    40. 40)
      • 36. Strickland, A.: ‘Gross anatomy and functions of skeletal muscles’, 2015. Available from: https://slideplayer.com/slide/4311270/.
    41. 41)
      • 51. Cereatti, A., Bonci, T., Akbarshahi, M., et al: ‘Standardization proposal of soft tissue artefact description for data sharing in human motion measurements’, J. Biomech., 2017, 62, pp. 513.
    42. 42)
      • 8. Delp, S.L., Anderson, F.C., Arnold, A.S., et al: ‘Opensim: open-source software to create and analyze dynamic simulations of movement’, IEEE Trans. Biomed. Eng., 2007, 54, (11), pp. 19401950.
    43. 43)
      • 30. van den Bogert, A.J., Geijtenbeek, T., Even-Zohar, O., et al: ‘A real-time system for biomechanical analysis of human movement and muscle function’, Med. Biol. Eng. Comput., 2013, 51, (10), pp. 10691077.
    44. 44)
      • 25. de Jesus-Rubio, J., Soriano, L.A.: ‘An asymptotic stable proportional derivative control with sliding mode gravity compensation and with a high gain observer for robotic arms’, Int. J. Innov. Comput., Inf. Control, 2010, 6, (10), pp. 45134526.
    45. 45)
      • 49. De las Casas, H., Kleis, K., Richter, H., et al: ‘Eccentric training with a powered rowing machine’, Med. Novel Technol. Devices, 2019, 2, p. 100008.
    46. 46)
      • 3. Erdemir, A., McLean, S., Herzog, W., et al: ‘Model-based estimation of muscle forces exerted during movements’, Clin. Biomech., 2007, 22, (2), pp. 131154.
    47. 47)
      • 7. Lee, J.K., Park, E.J.: ‘A fast quaternion-based orientation optimizer via virtual rotation for human motion tracking’, IEEE Trans. Biomed. Eng., 2009, 56, (5), pp. 15741582.
    48. 48)
      • 4. Xing, K., Huang, J., Wang, Y., et al: ‘Tracking control of pneumatic artificial muscle actuators based on sliding mode and non-linear disturbance observer’, IET Control Theory Applic., 2010, 4, (10), pp. 20582070.
    49. 49)
      • 48. Mohammadi, H., Yao, H., Khademi, G., et al: ‘Extended Kalman filtering for state estimation of a hill muscle model’, IET Control Theory Appl., 2018, 12, (3), pp. 384394.
    50. 50)
      • 19. Michieletto, S., Tonin, L., Antonello, M., et al: ‘GMM-based single-joint angle estimation using EMG signals’. Intelligent Autonomous Systems, 2016, pp. 11731184.
    51. 51)
      • 31. Simon, D.: ‘Optimal state estimation: kAlman, H-infinity, and nonlinear approaches’ (John Wiley and Sons, Hoboken, NJ, USA, 2006).
    52. 52)
      • 20. Falisse, A., Van-Rossom, S., Jonkers, I., et al: ‘EMG-driven optimal estimation of subject-specific hill model muscle-tendon parameters of the knee joint actuators’, IEEE Trans. Biomed. Eng., 2016, 64, (9), pp. 22532262.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2020.0321
Loading

Related content

content/journals/10.1049/iet-cta.2020.0321
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address