access icon free Tracking and disturbance attenuation control for stochastic switched systems with input delay

This work precisely deals with the phenomena of state tracking, attenuation of external disturbance and compensation of input delay for switched stochastic dynamical systems via improved-equivalent-input-disturbance (IEID) estimator and Smith predictor based modified repetitive control design. By hosting the stochastic state observer and combining it with the IEID estimator and modified repetitive control design, a new closed-loop form of control system is formulated. To be specific, for the resultant closed-loop augmented configuration, a novel criterion which ensures the exponential stability of the considered system is derived in the form of linear-matrix-inequalities in accordance with the Lyapunov theory. Simultaneously, an IEID estimator and Smith predictor based modified repetitive control is designed in such a way that the states of the considered system track the specific reference input signals perfectly. Finally, as an example F-18 aircraft model is provided for describing the competence of the designed controller strategy and to explain the dominance of the obtained proposed controller over the existing results.

Inspec keywords: delays; Lyapunov methods; robust control; asymptotic stability; control system synthesis; feedback; closed loop systems; nonlinear control systems; stochastic systems; uncertain systems; observers; time-varying systems; linear matrix inequalities

Other keywords: stochastic state observer; external disturbance; repetitive control design; disturbance attenuation control; designed controller strategy; input delay; closed-loop form; IEID estimator; compensation; specific reference input; state tracking; Smith predictor; stochastic switched systems; resultant closed-loop augmented configuration; switched stochastic dynamical systems; control system

Subjects: Time-varying control systems; Distributed parameter control systems; Optimal control; Control system analysis and synthesis methods; Stability in control theory; Nonlinear control systems; Algebra

References

    1. 1)
      • 26. Lee, D., Lee, M., Sung, S., et al: ‘Robust PID tuning for smith predictor in the presence of model uncertainty’, J. Process Control, 1999, 9, (1), pp. 7985.
    2. 2)
      • 6. Wu, Z.G., Shi, P., Su, H., et al: ‘Delay-dependent stability analysis for switched neural networks with time-varying delay’, IEEE Trans. Syst., Man, Cybern. B. Cybern., 2011, 41, (6), pp. 15221530.
    3. 3)
      • 9. Hillerström, G., Walgama, K.: ‘Repetitive control theory and applications-a survey’, IFAC Proc., 1996, 29, (1), pp. 14461451.
    4. 4)
      • 27. Sakthivel, R., Mohanapriya, S., Selvaraj, P., et al: ‘EID estimator-based modified repetitive control for singular systems with time-varying delay’, Nonlinear Dyn., 2017, 89, (2), pp. 11411156.
    5. 5)
      • 17. Longo, S., Herrmann, G., Barber, P.: ‘Robust scheduling of sampled-data networked control systems’, IEEE Trans. Control Syst. Technol., 2012, 20, (6), pp. 16131621.
    6. 6)
      • 1. Mao, X.: ‘Stochastic differential equations and applications’ (Elsevier, Scotland, 2007).
    7. 7)
      • 8. Oland, E., Kristiansen, R., Gravdahl, J.T.: ‘A comparative study of different control structures for flight control with new results’, IEEE Trans. Control Syst. Technol., 2020, 28, (2), pp. 291305.
    8. 8)
      • 7. Lian, J., Li, C., Xia, B.: ‘Sampled-data control of switched linear systems with application to an F-18 aircraft’, IEEE Trans. Ind. Electron., 2016, 64, (2), pp. 13321340.
    9. 9)
      • 28. Chen, Y., Zheng, W.X.: ‘Stability analysis and control for switched stochastic delayed systems’, Int. J. Robust Nonlinear Control, 2016, 26, (2), pp. 303328.
    10. 10)
      • 24. Astrom, K.J., Hang, C.C., Lim, B.C.: ‘A new smith predictor for controlling a process with an integrator and long dead-time’, IEEE Trans. Autom. Control, 1994, 39, (2), pp. 343345.
    11. 11)
      • 4. Wei, X.J., Wu, Z.J., Karimi, H.R.: ‘Disturbance observer-based disturbance attenuation control for a class of stochastic systems’, Automatica, 2016, 63, pp. 2125.
    12. 12)
      • 20. Li, H., Liu, H., Hand, S., et al: ‘Design of robust H controller for a half-vehicle active suspension system with input delay’, Int. J. Syst. Sci., 2013, 44, (4), pp. 625640.
    13. 13)
      • 2. Zhou, Q., Shi, P.: ‘A new approach to network-based H control for stochastic systems’, Int. J. Robust Nonlinear Control, 2012, 22, (9), pp. 10361059.
    14. 14)
      • 12. Zhou, L., She, J.: ‘Design of a robust output-feedback-based modified repetitive-control system’, Int. J. Syst. Sci., 2015, 46, (5), pp. 808817.
    15. 15)
      • 5. Li, X., Xiang, Z., Karimi, H.R.: ‘Asynchronously switched control of discrete impulsive switched systems with time delays’, Inf. Sci., 2013, 249, pp. 132142.
    16. 16)
      • 25. Gao, F., Wu, M., She, J., et al: ‘Delay-dependent guaranteed-cost control based on combination of smith predictor and equivalent-input-disturbance approach’, ISA Trans., 2016, 62, pp. 215221.
    17. 17)
      • 16. Xia, J., Park, J.H., Lee, T.H., et al: ‘H tracking of uncertain stochastic time-delay systems: memory state-feedback controller design’, Appl. Math. Comput., 2014, 249, pp. 356370.
    18. 18)
      • 15. Ouyang, L., Wu, M., She, J.: ‘Estimation of and compensation for unknown input nonlinearities using equivalent-input-disturbance approach’, Nonlinear Dyn., 2017, 88, (3), pp. 21612170.
    19. 19)
      • 13. Shan, Y., Leang, K.K.: ‘Accounting for hysteresis in repetitive control design: nanopositioning example’, Automatica, 2012, 48, (8), pp. 17511758.
    20. 20)
      • 19. Sakthivel, R., Selvi, S., Mathiyalagan, K., et al: ‘Reliable mixed H and passivity-based control for fuzzy Markovian switching systems with probabilistic time delays and actuator failures’, IEEE Trans. Cybern., 2015, 45, (12), pp. 27202731.
    21. 21)
      • 21. Choi, H.D., Ahn, C.K., Shi, P., et al: ‘Dynamic output-feedback dissipative control for T-S fuzzy systems with time-varying input delay and output constraints’, IEEE Trans. Fuzzy Syst., 2016, 25, (3), pp. 511526.
    22. 22)
      • 10. Shao, Z., Huang, S., Xiang, Z.: ‘Robust H repetitive control for a class of linear stochastic switched systems with time delay’, Circ. Syst. Signal Pr., 2015, 34, (4), pp. 13631377.
    23. 23)
      • 29. Sun, S., Wei, X., Zhang, H.: ‘Composite hierarchical anti-disturbance control for stochastic systems with multiple disturbances’, Trans. Inst. Meas. Control., 2018, 40, (6), pp. 19501955.
    24. 24)
      • 30. Jafarov, E.M., Tasaltin, R.: ‘Robust sliding-mode control for the uncertain MIMO aircraft model F-18’, IEEE Trans. Aerosp. Electron. Syst., 2000, 36, (4), pp. 11271141.
    25. 25)
      • 23. Smith, O.J.: ‘A controller to overcome dead time’, ISA Trans., 1959, 6, pp. 2833.
    26. 26)
      • 3. Liu, M., Zhang, L., Shi, P., et al: ‘Robust control of stochastic systems against bounded disturbances with application to flight control’, IEEE Trans. Ind. Electron., 2013, 61, (3), pp. 15041515.
    27. 27)
      • 22. Wag, M., Qiu, J., Chadli, M., et al: ‘A switched system approach to exponential stabilization of sampled-data T-S fuzzy systems with packet dropouts’, IEEE Trans. Cybern., 2015, 46, (12), pp. 31453156.
    28. 28)
      • 11. Liu, R.J., Liu, G.P., Wu, M., et al: ‘Disturbance rejection for time-delay systems based on the equivalent-input-disturbance approach’, J. Franklin Inst., 2014, 351, (6), pp. 33643377.
    29. 29)
      • 18. Song, B., Park, J.H., Wu, Z., et al: ‘New results on delay-dependent stability analysis and stabilization for stochastic time-delay systems’, Int. J. Robust Nonlinear Control, 2014, 24, (16), pp. 25462559.
    30. 30)
      • 14. Zhou, L., She, J., Zhou, S.: ‘A 2D system approach to the design of a robust modified repetitive-control system with a dynamic output-feedback controller’, Int. J. Appl. Math. Comput. Sci., 2014, 24, (2), pp. 325334.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2020.0313
Loading

Related content

content/journals/10.1049/iet-cta.2020.0313
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading