access icon free Inexact induced L2 observer-based control of polytopic LPV systems: application to clutchless automated manual transmission of pure electric vehicles

A novel method for observer-based control of disturbed polytopic linear parameter varying (LPV) systems with inexactly measured scheduling parameters is investigated in this study. Despite the imperfect scheduling parameters knowledge, the proposed control method ensures the closed-loop induced L 2-norm performance criterion. Unlike the previous methods, the inexact scheduling parameters are not assumed to be proportional to the original scheduling parameters of the LPV system. Employing both cases of parameter-dependent and parameter-independent Lyapunov functions, sufficient design conditions in terms of linear matrix inequalities are provided using Finsler's lemma. Numerical examples are included to demonstrate the efficiency of the proposed method and its superiority over the previous techniques. Moreover, a practical case study, i.e. clutchless automated manual transmission system is considered and controlled by the developed approach numerically.

Inspec keywords: observers; Lyapunov methods; power transmission (mechanical); linear matrix inequalities; control system synthesis; robust control; closed loop systems; time-varying systems; electric vehicles; linear parameter varying systems

Other keywords: manual transmission system; inexactly measured scheduling parameters; LPV system; control method; polytopic LPV systems; L2-norm performance criterion; sufficient design conditions; original scheduling parameters; pure electric vehicles; linear matrix inequalities; parameter-independent Lyapunov functions; parameter-dependent Lyapunov functions; inexact scheduling parameters; clutchless automated manual transmission; disturbed polytopic linear parameter; imperfect scheduling parameters knowledge; L2 observer-based control

Subjects: Optimal control; Numerical analysis; Transportation system control; Mechanical drives and transmissions; Control system analysis and synthesis methods; Linear algebra (numerical analysis); Time-varying control systems; Linear control systems; Stability in control theory

References

    1. 1)
    2. 2)
    3. 3)
      • 16. Daafouz, J., Bernussou, J., Geromel, J.C.: ‘On inexact LPV control design of continuous-time polytopic systems’, IEEE Trans. Autom. Control, 2008, 53, (7), pp. 16741678.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 21. Wu, F., Yang, X.H., Packard, A., et al: ‘Induced L2-norm control for LPV systems with bounded parameter variation rates’, Int J Nonlinear Robust Control, 1996, 6, (9–10), pp. 983998.
    9. 9)
      • 7. Estrada, F. L., Ponsart, J.-C., Theilliol, D., et al: ‘Robust $H_2/H_ınfty$ fault detection observer design for descriptor-LPV systems with unmeasurable gain scheduling functions’, Int. J. Control, 2015, 88, (11), pp. 23802391.
    10. 10)
      • 34. Dong, J., Yang, G.-H.: ‘Robust static output feedback control synthesis for linear continuous systems with polytopic uncertainties’, Automatica, 2013, 49, (6), pp. 18211829.
    11. 11)
      • 17. Sato, M.: ‘Gain-scheduled flight controller using bounded inexact scheduling parameters’, IEEE Trans. Control Syst. Technol., 2018, 26, (3), pp. 10741083.
    12. 12)
    13. 13)
    14. 14)
      • 29. Ho, D.W., Lu, G.: ‘Robust stabilization for a class of discrete-time non-linear systems via output feedback: the unified LMI approach’, Int. J. Control, 2003, 76, (2), pp. 105115.
    15. 15)
    16. 16)
      • 14. Sato, M., Peaucelle, D.: ‘Gain-scheduled output-feedback controllers using inexact scheduling parameters for continuous-time LPV systems’, Automatica, 2013, 49, (4), pp. 10191025.
    17. 17)
      • 1. Wu, H.-M., Tafreshi, R.: ‘Air-fuel ratio control of lean-burn SI engines using the LPV-based fuzzy technique’, IET Control Theory Appl., 2018, 12, (10), pp. 14141420.
    18. 18)
    19. 19)
      • 37. Al-Jiboory, A.K., Zhu, G.G., Choi, J.: ‘Guaranteed performance state-feedback gain-scheduling control with uncertain scheduling parameters’, J. Dyn. Syst. Meas. Control, 2016, 138, (1), p. 014502.
    20. 20)
    21. 21)
    22. 22)
      • 8. Lacerda, M. J., Tognetti, E. S., Oliveira, R. C., et al: ‘A new approach to handle additive and multiplicative uncertainties in the measurement for LPV filtering’, Int. J. Syst. Sci., 2016, 47, (5), pp. 10421053.
    23. 23)
    24. 24)
      • 32. Ebihara, Y., Peaucelle, D., Arzelier, D.: ‘S-Variable approach to LMI-based robust control’ (Springer London, London, 2015).
    25. 25)
    26. 26)
    27. 27)
      • 11. Rotondo, D., Nejjari, F., Puig, V.: ‘Robust state-feedback control of uncertain LPV systems: an LMI-based approach’, J. Frankl. Inst., 2014, 351, (5), pp. 27812803.
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • 30. de Oliveira, M.C., Skelton, R.E.: ‘Stability tests for constrained linear systems’. Perspectives in robust control, London, 2001, pp. 241257.
    33. 33)
    34. 34)
    35. 35)
      • 26. Lacerda, M.J., Tognetti, E.S., Oliveira, R.C.L.F., et al: ‘H∞ LPV filtering for discrete-time linear systems subject to additive and multiplicative uncertainties in the measurement’. 2013 European Control Conf. (ECC), Zurich, Switzerland, July 2013, pp. 18231828,.
    36. 36)
      • 24. Asadi, S., Khayatian, A., Dehghani, M., et al: ‘Robust sliding mode observer design for simultaneous fault reconstruction in perturbed takagi-sugeno fuzzy systems using non-quadratic stability analysis’, J. Vib. Control, 2020, 26, (11–12), pp. 10921105.
    37. 37)
      • 9. Sadeghzadeh, A.: ‘Gain-scheduled filtering for linear parameter-varying systems using inexact scheduling parameters with bounded variation rates’, Int. J. Robust Nonlinear Control, 2016, 26, (13), pp. 28642879.
    38. 38)
    39. 39)
      • 22. Heemels, W.M.H., Daafouz, J., Millerioux, G.: ‘Observer-based control of discrete-time LPV systems with uncertain parameters’, IEEE Trans. Autom. Control, 2010, 55, (9), pp. 21302135.
    40. 40)
    41. 41)
      • 15. Kose, I.E., Jabbari, F.: ‘Control of LPV systems with partly measured parameters’, IEEE Trans. Autom. Control, 1999, 44, (3), pp. 658663.
    42. 42)
      • 10. Zhang Zhi Hui, G.H.Y.: ‘Fault detection for discrete-time uncertain LPV systems using non-minimal order filter’, J. Frankl. Inst., 2018, 355, (2), pp. 902921.
    43. 43)
    44. 44)
    45. 45)
    46. 46)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2020.0309
Loading

Related content

content/journals/10.1049/iet-cta.2020.0309
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading