access icon free Dynamic output feedback controller design for interval type-2 T–S fuzzy fractional order systems

This study discusses the issue of the stabilisation of interval type-2 Takagi–Sugeno (T–S) fuzzy fractional order systems by designing the dynamic output feedback controller. In the system model, the system matrix has no assuming limitations. Different membership functions are attached to the T–S fuzzy model and fuzzy controller. For fractional order of case, sufficient conditions in terms of strict linear matrix inequalities are addressed. Then, for order case, by some contragradient transformations, sufficient stability conditions in terms of convex optimisation problems are derived. All of the proposed theorems are strict linear matrix inequalities and can be solved in standard software. Finally, two numerical simulation examples are given to illustrate the effectiveness of the proposed method.

Inspec keywords: linear matrix inequalities; Lyapunov methods; stability; fuzzy control; fuzzy systems; fuzzy set theory; feedback; convex programming; control system synthesis

Other keywords: strict linear matrix inequalities; convex optimisation problems; system matrix; dynamic output feedback controller design; sufficient stability conditions; contragradient transformations; fuzzy controller; interval type-2 Takagi–Sugeno fuzzy fractional order systems; membership functions

Subjects: Fuzzy control; Control system analysis and synthesis methods; Combinatorial mathematics; Algebra; Optimisation techniques; Stability in control theory

References

    1. 1)
      • 17. Zhang, J.X., Yang, G.H.: ‘Fault-tolerant output-constrained control of unknown Euler-Lagrange systems with prescribed tracking accuracy’, Automatica., 2020, 111, pp. 108606. Available at https://doi.org/10.1016/j.automatica.2019.108606.
    2. 2)
      • 44. Chen, J., Sun, Y., Min, H., et al: ‘New results on static output feedback H control for fuzzy singularly perturbed systems: a linear matrix inequality approach’, Int. J. Robust Nonlinear Control, 2013, 23, (6), pp. 681694.
    3. 3)
      • 18. Zadeh, L.A.: ‘Fuzzy sets, fuzzy logic and fuzzy systems’ (World Scientific, New York, USA, 1996).
    4. 4)
      • 1. Podlubny, I.: ‘Fractional differential equations’ (Academie Press, New York, 1999).
    5. 5)
      • 16. Zhang, J.X., Yang, G.H.: ‘Low-complexity tracking control of strict-feedback systems with unknown control directions’, IEEE Trans. Autom. Control, 2019, 64, (12), pp. 51755182.
    6. 6)
      • 4. Lanusse, P., Benlaoukli, H., Nelson-Gruel, D., et al: ‘Fractional-order control and interval analysis of SISO systems with time-delayed state’, IET Control Theory Appl., 2008, 2, pp. 1623.
    7. 7)
      • 30. Zhang, X.F., Chen, Y.Q.: ‘Admissibility and robust stabilization of continuous linear singular fractional order systems with the fractional order α: the 0<α<1 case’, ISA Trans., 2017, 82, pp. 4250.
    8. 8)
      • 39. Lan, Y.H., Zhou, Y.: ‘LMI-based robust control of fractional-order uncertain linear systems’, Comput. Math. Appl., 2011, 62, pp. 14601471.
    9. 9)
      • 7. Bagley, R.L., Calico, R.A.: ‘Fractional order state equations for the control of viscoelastically damped structures’, Proc. Damping, 1991, 14, (2), pp. 304311.
    10. 10)
      • 10. Sabatier, J., Moze, M., Farges, C.: ‘LMI stability conditions for fractional order systems’, Comput. Math. Appl., 2010, 59, (5), pp. 15941609.
    11. 11)
      • 31. Jiao, Z., Zhong, Y.: ‘Robust stability for uncertain fractional-order systems’. Proc. of the 29th Chinese Control Conf., Beijing, People's Republic of China, 2010.
    12. 12)
      • 32. Ji, Y.D., Qiu, J.Q.: ‘Stabilization of fractional-order singular uncertain systems’, ISA Trans., 2015, 56, pp. 5364.
    13. 13)
      • 9. Matignon, D.: ‘Stabilty properties for generalized fractional differential systems’, ESAIM: Proc., 1998, 5, pp. 145158.
    14. 14)
      • 34. Lan, Y.H., Huang, H.X., Zhou, Y.: ‘Observer-based robust control of a (1α<2) fractional-order uncertain systems: a linear matrix inequality approach’, IET Control Theory Applic., 2012, 6, (2), pp. 229234.
    15. 15)
      • 40. Zhang, X.F., Zhao, Z.L., Wang, Q.G.: ‘Static and dynamic output feedback stabilisation of descriptor fractional order systems’, IET Control Theory Applic., 2019, 9, (12), pp. 12361243.
    16. 16)
      • 33. Lin, C., Chen, B., Shi, P., et al: ‘Necessary and sufficient conditions of observer-based stabilization for a class of fractional-order descriptor systems’, Syst. Control Lett., 2018, 112, pp. 3135.
    17. 17)
      • 24. Lin, C., Wang, Q.G., Lee, T.H.: ‘Robust normalization and stabilization of uncertain descriptor systems with norm-bounded perturbations’, IEEE Trans. Autom. Control, 2005, 50, (4), pp. 515520.
    18. 18)
      • 23. Anastasio, T.J.: ‘Nonuniformity in the linear network model of the oculomotor integrator produces approximately fractional-order dynamics and more realistic neuron behavior’, Biol. Cybern., 1998, 79, pp. 377391.
    19. 19)
      • 38. Ji, Y.D., Su, L.Q., Qiu, J.Q.: ‘Design of fuzzy output feedback stabilization for uncertain fractional-order systems’, Neurocomputing, 2016, 173, pp. 16831693.
    20. 20)
      • 8. Vinagre, B.M., Chen, Y., Petras, I.: ‘Two direct Tustin discretization methods for fractional-order diferentiator/integrator’, J. Frankl. Inst., 2003, 340, pp. 349362.
    21. 21)
      • 11. Lu, J.G., Chen, Y.Q.: ‘Robust stability and stabilization of fractional-order interval systems with the fractional order α: the 0<α<1 case’, IEEE Trans. Autom. Control, 2010, 55, (1), pp. 152158.
    22. 22)
      • 35. Li, B.X., Zhang, X.F.: ‘Observer based robust control of (0<α<1) fracional order linear uncertan control systems’, IET Control Theory Applic., 2016, 10, pp. 17241731.
    23. 23)
      • 6. Tavazoei, M.S., Haeri, M.: ‘A necessary condition for double scroll attractor existence in fractional-order systems’, Phys. Lett. A, 2007, 367, (1–2), pp. 102113.
    24. 24)
      • 5. Arena, P., Caponetto, R., Fortuna, L., et al: ‘Nonlinear Noninteger Order Circuits System. Introduction’, (World Scientific, New Jersey, 2000), 2000.
    25. 25)
      • 15. Zhang, J.X., Yang, G.H.: ‘Prescribed performance fault-tolerant control of uncertain nonlinear systems with unknown control directions’, IEEE Trans. Autom. Control, 2017, 62, (12), pp. 65296535.
    26. 26)
      • 20. Takagi, T., Sugeno, M.: ‘Fuzzy identification of systems and its application to modeling and control’, IEEE Trans. Syst. Man Cybern., 1985, 15, (1), pp. 116132.
    27. 27)
      • 28. Mohammadzadeh, A., Ghaemi, S., Kaynak, O., et al: ‘Robust predictive synchronization of uncertain fractional-order time-delayed chaotic systems’, Soft Comput., 2019, 23, pp. 68836898.
    28. 28)
      • 27. Zheng, W., Wang, H., Hua, C., et al: ‘Dynamic output-feedback control for nonlinear continuous-time systems based on parametric uncertain subsystem and interval type-2 fuzzy mode’, J. Franklin Inst., 2018, 355, pp. 79627984.
    29. 29)
      • 36. Li, C., Wang, J., Lu, J.: ‘Observer-based robust stabilization of a class of non-linear fractional-order uncertain systems: an linear matrix inequalities approach’, IET Control Theory Applic., 2012, 6, (18), pp. 27572764.
    30. 30)
      • 2. Hilfer, R.: ‘Application of fractional calculus in physics’ (World Science Publishing, Singapore, 2000).
    31. 31)
      • 21. Battaglia, J.L., Lay, L.L, Bastale, J.C., et al: ‘Heat flux estimation through inverted non integer identi fication models’, Int. J. Therm. Sci., 2000, 39, pp. 374389.
    32. 32)
      • 19. Lin, C., Chen, J., Chen, B., et al: ‘Fuzzy normalization and stabilization for a class of nonlinear rectangular descriptor systems’, Neurocomputing, 2017, 219, pp. 263268.
    33. 33)
      • 37. Wei, Y.H., Tse, P.W., Yao, Z., et al: ‘The output feedback control synthesis for a class of singular fractional order systems’, ISA Trans., 2017, 69, pp. 19.
    34. 34)
      • 26. Lam, H.K., Li, H.Y., Deters, C., et al: ‘Control design for interval type-2 fuzzy systems under imperfect premise matching’, IEEE Trans. Fuzzy Syst., 2014, 61, (2), pp. 956968.
    35. 35)
      • 25. Li, H.Y., Sun, X.J., Wu, L.G., et al: ‘State and output feedback control of interval type-2 fuzzy systems with mismatched membership functions’, IEEE Trans. Fuzzy Syst., 2015, 23, (6), pp. 19431957.
    36. 36)
      • 22. Sabatier, J., Aoun, M., Oustaloup, A.E.: ‘Fractional system identification for lead acid battery state charge estimation’, Signal Process., 2006, 86, pp. 26452657.
    37. 37)
      • 43. Scherer, C., Gahinet, P., Chilali, M.: ‘Multiobjective output-feedback control via LMI optimization’, IEEE Trans. Autom. Control, 1997, 7, (42), pp. 896911.
    38. 38)
      • 42. MacDuffee, C.C.: ‘The theory of matrices’ (Dover Publications, New York, 2004).
    39. 39)
      • 29. Mohammadzadeh, A., Kaynak, O.: ‘A novel general type-2 fuzzy controller for fractional-order multi-agent systems under unknown time-varying topology’, J. Franklin Inst., 2019, 356, (10), pp. 51515171.
    40. 40)
      • 12. Lu, J.G., Chen, G.R.: ‘Robust stability and stabilization of fractional order interval systems: an LMI approach’, IEEE Trans. Autom. Control, 2009, 54, (6), pp. 12941299.
    41. 41)
      • 13. Zhang, X.F., Chen, Y.Q.: ‘D-stability based LMI criteria of stability and stabilization for fractional order systems’. ASME 2015 Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf., Boston, MA, USA, 2015.
    42. 42)
      • 41. Badri, P., Sojoodi, M.: ‘Robust fixed-order dynamic output feedback controller design for fractional-order systems’, IET Control Theory Applic., 2018, 9, (12), pp. 12361243.
    43. 43)
      • 14. Zhang, X.F.: ‘Relationship between integer order systems and fractional order systems and its two applications’, IEEE/CAA J. Autom. Sin., 2018, 5, (2), pp. 639643.
    44. 44)
      • 3. Ortigueira, M.D., Machado, J.A.T.: ‘Special issue on fractional signal processing and applications’, Signal Process., 2003, 83, pp. 22852480.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2020.0221
Loading

Related content

content/journals/10.1049/iet-cta.2020.0221
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading