access icon free Semi-global containment of discrete-time high-order multi-agent systems with input saturation via intermittent control

This study investigates the intermittent semi-global containment of discrete-time high-order multi-agent systems with input saturation. The intermittent semi-global containment protocol is proposed based on discrete-time low-gain state feedback control. Some containment conditions are obtained, and the convergence analysis is given. It is turned out that all the followers beginning from a bounded initial set will asymptotically enter into the convex hull spanned by the leaders under the proposed protocol. Moveover, intermittent semi-global leader-following consensus with input saturation is considered as a special case, and the corresponding result is introduced. Finally, numerical simulations are presented to illustrate the theoretical findings.

Inspec keywords: state feedback; linear systems; discrete time systems; adaptive control; control system synthesis; distributed control; feedback; nonlinear control systems; multi-robot systems; multi-agent systems

Other keywords: input saturation; low-gain state feedback control; intermittent semiglobal containment protocol; containment conditions; intermittent semiglobal leader-following consensus; discrete-time high-order multiagent systems; intermittent control

Subjects: Nonlinear control systems; Combinatorial mathematics; Stability in control theory; Multivariable control systems; Self-adjusting control systems; Discrete control systems; Linear control systems; Control system analysis and synthesis methods

References

    1. 1)
      • 15. Su, H., Wu, H., James, L.: ‘Positive edge-consensus for nodal networks via output feedback’, IEEE Trans. Autom. Control, 2019, 64, (3), pp. 12441249.
    2. 2)
      • 30. Xu, C., Xu, H., Su, H., et al: ‘Disturbance-observer based consensus of linear multi-agent systems with exogenous disturbance under intermittent communication’, Neurocomputing, 2020, 404, pp. 2633.
    3. 3)
      • 26. Su, H., Chen, M., Lam, J., et al: ‘Semi-global leader-following consensus of linear multi-agent systems with input saturation via low gain feedback’, IEEE Trans. Circuits Syst. I Regul. Pap., 2013, 60, (7), pp. 18811889.
    4. 4)
      • 7. Xu, C., Zhao, Y., Qin, B., et al: ‘Adaptive synchronization of coupled harmonic oscillators under switching topology’, J. Franklin Inst., 2019, 356, (2), pp. 10671087.
    5. 5)
      • 29. Guan, Z.-H., Yue, D., Hu, B., et al: ‘Cluster synchronization of coupled genetic regulatory networks with delays via aperiodically adaptive intermittent control’, IEEE Trans. Nanobiosci., 2017, 16, (7), pp. 585599.
    6. 6)
      • 6. Ren, W., Beard, R.W.: ‘Consensus seeking in multi-agent systems under dynamically changing interaction topologies’, IEEE Trans. Autom. Control, 2005, 50, (5), pp. 655661.
    7. 7)
      • 21. Liu, H., Xie, G., Yu, M.: ‘Necessary and sufficient conditions for containment control of fractional-order multi-agent systems’, Neurocomputing, 2019, 323, pp. 8695.
    8. 8)
      • 14. Wu, Z-G., Xu, Y., Pan, Y-J., et al: ‘Event-triggered pinning control for consensus of multiagent systems with quantized information’, IEEE Trans. Syst. Man Cybern. Syst., 2018, 48, (11), pp. 19291938.
    9. 9)
      • 3. Chen, S., Pei, H., Lai, Q., et al: ‘Multi-target tracking control for coupled heterogenous inertial agent systems based on flocking behavior’, IEEE Trans. Syst. Man Cybern. Syst., 2019, 19, (12), pp. 26052611.
    10. 10)
      • 20. Rong, L., Lu, J., Xu, S., et al: ‘Reference model-based containment control of multi-agent systems with higher-order dynamics’, IET Control Theory Appl., 2014, 8, (10), pp. 796802.
    11. 11)
      • 22. Zhang, L., Chen, M.Z., Su, H.: ‘Observer-based semi-global consensus of discrete-time multi-agent systems with input saturation’, Trans. Inst. Meas. Control, 2016, 38, (6), pp. 665674.
    12. 12)
      • 23. Sakthivel, R., Sakthivel, R., Kaviarasan, B., et al: ‘Leader-following exponential consensus of input saturated stochastic multi-agent systems with Markov jump parameters’, Neurocomputing, 2018, 287, pp. 8492.
    13. 13)
      • 25. Wen, G., Huang, J., Peng, Z., et al: ‘On pinning group consensus for heterogeneous multi-agent system with input saturation’, Neurocomputing, 2016, 207, pp. 623629.
    14. 14)
      • 28. Du, H., Li, S., Shi, P.: ‘Robust consensus algorithm for second-order multi-agent systems with external disturbances’, Int. J. Control, 2012, 85, (12), pp. 19311928.
    15. 15)
      • 8. Xu, C., Su, H., Liu, C., et al: ‘Robust adaptive synchronization of complex network with bounded disturbances’, Adv. Differ. Equ., 2019, pp. 114, https://doi.org/10.1186/s13662-019-2374-z.
    16. 16)
      • 12. Yu, W., Chen, G., Cao, M.: ‘Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems’, Automatica, 2010, 46, (6), pp. 10891095.
    17. 17)
      • 17. Zhu, Y., Zheng, Y., Wang, L.: ‘Containment control of switched multi-agent systems’, Int. J. Control, 2015, 88, (12), pp. 25702577.
    18. 18)
      • 1. Yang, R., Zhang, H., Feng, G., et al: ‘Robust cooperative output regulation of multi-agent systems via adaptive event-triggered control’, Automatica, 2019, 102, pp. 129136.
    19. 19)
      • 32. Lin, Z.: ‘Low gain feedback, lecture notes in control and information sciences’ (Springer, London, UK, 1998), p. p 240.
    20. 20)
      • 13. Hong, Y., Chen, G., Bushnell, L.: ‘Distributed observers design for leader-following control of multi-agent networks’, Automatica, 2008, 44, (3), pp. 846850.
    21. 21)
      • 5. Olfati-Saber, R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533.
    22. 22)
      • 31. Lin, Z.: Low gain feedback, (Lecture Notes in Control and Information Sciences, 240) (Springer, London, 1998).
    23. 23)
      • 4. Yan, H., Tian, Y., Li, H., et al: ‘Input-output finite-time mean square stabilisation of nonlinear semi-markovian jump systems’, Automatica, 2019, 104, pp. 8289.
    24. 24)
    25. 25)
    26. 26)
      • 19. Liu, Y., Zhao, Y., Shi, Z., et al: ‘Specified-time containment control of multi-agent systems over directed topologies’, IET Control Theory Appl., 2016, 11, (4), pp. 576585.
    27. 27)
      • 18. Wang, D., Wang, D., Wang, W.: ‘Necessary and sufficient condition for containment control of multi-agent systems with time delay’, Automatica, 2019, 103, pp. 418423.
    28. 28)
      • 27. Su, H., Chen, M., Wang, X., et al: ‘Semiglobal observer-based leader-following consensus with input saturation’, IEEE Trans. Ind. Elctron., 2013, 61, (6), pp. 28422850.
    29. 29)
      • 16. Li, Z., Duan, Z., Chen, G., et al: ‘Consensus of multi-agent systems and synchronization of complex netwroks: a unified viewpoint’, IEEE Trans. Circuits Syst. I Regul. Pap., 2010, 57, (1), pp. 213224.
    30. 30)
      • 2. Wang, D., Wang, Z., Wen, C., et al: ‘Second-order continuous-time algorithm for optimal resource allocation in power systems’, IEEE Trans. Ind. Inf., 2019, 15, (2), pp. 626637.
    31. 31)
      • 11. Su, H., Ye, Y., Qiu, Y., et al: ‘Semi-global output consensus for discrete-time switching networked systems subject to input saturation and external disturbances’, IEEE Trans. Cybern., 2019, 49, (11), pp. 39343945.
    32. 32)
      • 24. Wang, X., Su, H., Wang, X., et al: ‘An overview of coordinated control for multi-agent systems subject to input saturation’, Perspect. Sci., 2016, 7, pp. 133139.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2020.0110
Loading

Related content

content/journals/10.1049/iet-cta.2020.0110
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading