Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Output feedback controller for trajectory tracking of robot manipulators without velocity measurements nor observers

The main contribution of this study is the design of a trajectory tracking controller using output feedback applied to robot manipulators. The given controller does not need velocity measurements for its implementation and to achieve the tracking control objective. The structure of the proposed scheme consists of a proportional gain plus a dynamic gain resulting from a first-order system. The dynamic gain is not motivated by any observer nor estimator to approach the joint velocity. The dynamic linear controller has three tunable gain parameters for the one degrees-of-freedom (DOF) systems and two gain matrices for the nDOF lagrangian systems. These gains can be tuned following the conditions given in the stability analysis. An adaptive estimator of the viscous friction coefficient is added to robustify the closed-loop design; the analysis for the estimator is presented for one DOF systems and nDOF manipulators. The closed-loop stability analyses are developed by using Lyapunov's theory. The performance of the proposed control structure is illustrated and compared with other controllers such as the PID controller and the first-order sliding mode algorithm via numerical simulations. Moreover, real-time experiments are carried out in a two DOF SCARA robot manipulator.

References

    1. 1)
      • 20. Malagari, S., Driessen, B.J.: ‘Globally exponential controller/observer for tracking in robots with dc motor dynamics and only link position measurement’, Int. J. Model. Identif. Control, 2013, 19, (1), pp. 112.
    2. 2)
      • 3. Huang, C., Li, F., Jin, Z.: ‘Maximum power point tracking strategy for large-scale wind generation systems considering wind turbine dynamics’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 25302539.
    3. 3)
      • 11. Ellis, G.: ‘Observers in control systems: a practical guide’ (Academic Press, San Diego, 2002).
    4. 4)
      • 28. Åström, K.J., Hägglund, T.: ‘PID controllers: theory, design, and tuning’, vol. 2' (Instrument society of America Research, Triangle Park, NC, 1995).
    5. 5)
      • 27. Jin, X.-Z., Zhao, Y.-X., Wang, H., et al: ‘Adaptive fault-tolerant control of mobile robots with actuator faults and unknown parameters’, IET Control Theory Appl., 2019, 13, (11), pp. 16651672.
    6. 6)
      • 26. López-Araujo, D., Loría, A., Zavala-Río, A.: ‘Adaptive tracking control of Euler–Lagrange systems with bounded controls’, Int. J. Adapt. Control Signal Process., 2017, 31, (3), pp. 299313.
    7. 7)
      • 18. Loria, A.: ‘Global tracking control of one degree of freedom Euler-Lagrange systems without velocity measurements’, IFAC Proc. Volumes, 1996, 29, (1), pp. 22952300.
    8. 8)
      • 12. Romero, J.G., Ortega, R., Sarras, I.: ‘A globally exponentially stable tracking controller for mechanical systems using position feedback’, IEEE Trans. Autom. Control, 2015, 60, (3), pp. 818823.
    9. 9)
      • 25. Yarza, A., Santibanez, V., Moreno-Valenzuela, J.: ‘An adaptive output feedback motion tracking controller for robot manipulators: uniform global asymptotic stability and experimentation’, Int. J. Appl. Math. Comput. Sci., 2013, 23, (3), pp. 599611.
    10. 10)
      • 21. Rascón, R., Rosas, D., Hernandez-Fuentes, I., et al: ‘Robust tracking control for mechanical systems using only position measurements’, ISA Trans., 2019, pp. 123.
    11. 11)
      • 24. Moreno-Valenzuela, J., Santibanez, V., Orozco-Manrıquez, E., et al: ‘Theory and experiments of global adaptive output feedback tracking control of manipulators’, IET Control Theory Appl., 2010, 4, (9), pp. 16391654.
    12. 12)
      • 17. Peregudova, O.: ‘Robust trajectory tracking control for robot manipulators without velocity measurements’. 2018 14th Int. Conf.' Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conf.), Moscow, Russia, 2018, pp. 13.
    13. 13)
      • 7. Gutiérrez-Giles, A., Arteaga-Pérez, M.A.: ‘{GPI} based velocity/force observer design for robot manipulators’, {ISA} Trans., 2014, 53, (4), pp. 929938.
    14. 14)
      • 19. Wang, H., Liu, Y.H., Chen, W.: ‘Uncalibrated visual tracking control without visual velocity’, IEEE Trans. Control Syst. Technol., 2010, 18, (6), pp. 13591370.
    15. 15)
      • 4. Lazaroiu, G.C., Longo, M., Roscia, M., et al: ‘Comparative analysis of fixed and sun tracking low power pv systems considering energy consumption’, Energy Convers. Manage., 2015, 92, pp. 143148.
    16. 16)
      • 16. Nunes, E.V., Hsu, L.: ‘Global tracking for robot manipulators using a simple causal pd controller plus feedforward’, Robotica, 2010, 28, (1), pp. 2334.
    17. 17)
      • 13. Besançon, G.: ‘Global output feedback tracking control for a class of Lagrangian systems’, Automatica, 2000, 36, (12), pp. 19151921.
    18. 18)
      • 29. Rascón, R., Peñaloza-Mejía, O., Castro, J.G.: ‘Improving first order sliding mode control on second order mechanical systems’, Euro. J. Control, 2016, 29, pp. 7480.
    19. 19)
      • 8. Rosas, D., Alvarez, J., Rosas, P., et al: ‘Robust observer for a class of nonlinear siso dynamical systems’, Math. Probl. Eng., 2016, 2016, pp. 19.
    20. 20)
      • 2. Andreev, A., Peregudova, O.: ‘Trajectory tracking control for robot manipulators using only position measurements’, Int. J. Control, 2019, 92, (7), pp. 14901496.
    21. 21)
      • 10. Yan, Y., Yang, J., Sun, Z., et al: ‘Non-linear-disturbance-observer-enhanced mpc for motion control systems with multiple disturbances’, IET Control Theory Applic., 2019, 14, (1), pp. 6372.
    22. 22)
      • 22. Pérez-Alcocer, R., Moreno-Valenzuela, J.: ‘A novel lyapunov-based trajectory tracking controller for a quadrotor: experimental analysis by using two motion tasks’, Mechatronics, 2019, 61, pp. 5868.
    23. 23)
      • 9. Shtessel, Y., Edwards, C., Fridman, L., et al: ‘Sliding mode control and observation’ (Springer New York, New York, 2014).
    24. 24)
      • 23. De-Queiroz, M.S., Dawson, D.M., Nagarkatti, S.P., et al: ‘Lyapunov-based control of mechanical systems’ (Springer Science & Business Media, 2012).
    25. 25)
      • 5. Zhou, Q., Li, H., Shi, P.: ‘Decentralized adaptive fuzzy tracking control for robot finger dynamics’, IEEE Trans. Fuzzy Syst., 2015, 23, (3), pp. 501510.
    26. 26)
      • 15. Loría, A.: ‘Observers are unnecessary for output-feedback control of Lagrangian systems’, IEEE Trans. Autom. Control, 2016, 61, (4), pp. 905920.
    27. 27)
      • 1. Andreev, A., Peregudova, O.: ‘On global trajectory tracking control of robot manipulators in cylindrical phase space’, Int. J. Control, 2019, pp. 113.
    28. 28)
      • 33. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, Upper Saddle River, 2002, 3rd edn.).
    29. 29)
      • 14. Mabrouk, M.: ‘Triangular form for Euler–Lagrange systems with application to the global output tracking control’, Nonlinear Dyn., 2010, 60, (1-2), pp. 8798.
    30. 30)
      • 6. Bartolini, G., Estrada, A., Punta, E.: ‘Observation and output adaptive tracking for a class of nonlinear nonminimum phase systems’, Int. J. Control, 2016, 5, (2), pp. 120.
    31. 31)
      • 31. Zhang, J., Swain, A.K., Nguang, S.K.: ‘Robust observer-based fault diagnosis for nonlinear systems using MATLAB®’ (Springer International Publishing, Switzerland, 2016).
    32. 32)
      • 32. Kelly, R., Davila, V.S., Perez, J.A.L.: ‘Control of robot manipulators in joint space’ (Springer Science & Business Media, 2006).
    33. 33)
      • 30. Rascón, R., Reyna, M.A., Torres, J.: ‘Tracking and regulation control of a scara robot with application to minimally invasive surgeries’. 2016 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE), Madrid, Spain, 2016, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2020.0037
Loading

Related content

content/journals/10.1049/iet-cta.2020.0037
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address