Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Observer-based neural adaptive control of a platoon of autonomous tractor–trailer vehicles with uncertain dynamics

This study addresses the platoon formation control problem of multiple off-axle hitching tractor–trailers with limited communication ranges, under model uncertainties and external disturbances, without any collision and without velocity and acceleration measurements for the first time. Towards this end, a new second-order Euler–Lagrange formulation of tractor–trailers is introduced under the prescribed performance design procedure that preserves all structural properties of the tractor–trailer dynamics. Then, a prescribed performance non-linear transformation, a saturated filtered tracking error, radial basis function neural networks, an adaptive robust controller, and a high-gain observer are creatively employed to design a novel platoon output-feedback controller, which forces the vehicles to construct a desired convoy while guaranteeing the robust performance against unmodelled dynamics and external forces and ensuring inter-vehicular communication maintenance, collision avoidance between each successive pair in the convoy of vehicles, and some preassigned desired response specifications of platoon formation errors including overshoot/undershoot, convergence speed, and ultimate tracking accuracy. By utilising a Lyapunov-based stability analysis, a semi-global uniform ultimate boundedness of formation errors is ensured with prescribed performance. Finally, simulation results illustrate the efficacy of the proposed control system.

References

    1. 1)
      • 21. Liu, X., Madhusudhanan, A.K., Cebon, D.: ‘Minimum swept-path control for autonomous reversing of a tractor semi-trailer’, IEEE Trans. Veh. Technol., 2019, 68, (5), pp. 43674376.
    2. 2)
      • 13. Binh, N.T., Tung, N.A., Nam, D.P., et al: ‘An adaptive backstepping trajectory tracking control of a tractor trailer wheeled mobile robot’, Int. J. Control Autom. Syst., 2019, 17, (2), pp. 465473.
    3. 3)
      • 18. Yue, M., Wu, X., Guo, L., et al: ‘Quintic polynomial-based obstacle avoidance trajectory planning and tracking control framework for tractor—trailer system’, Int. J. Control Autom. Syst., 2019, 17, (10), pp. 26342646.
    4. 4)
      • 34. Lewis, F.L., Dawson, D.M., Abdallah, C.T.: ‘Robot manipulator control theory and practice’, revised and expanded (Marcel Dekker, New York, 2004, 2nd edn.).
    5. 5)
      • 33. Shojaei, K.: ‘Three-dimensional neural network tracking control of a moving target by underactuated autonomous underwater vehicles’, Neural Comput. Appl., 2019, 31, (2), pp. 509521.
    6. 6)
      • 16. Alipour, K., Robat, A.B., Tarvirdizadeh, B.: ‘Dynamics modeling and sliding mode control of tractor–trailer wheeled mobile robots subject to wheels slip’, Mech. Mac. Theory, 2019, 138, pp. 1637.
    7. 7)
      • 9. Shojaei, K.: ‘Neural network formation control of a team of tractor–trailer systems’, Robotica, 2018, 36, (1), pp. 3956.
    8. 8)
      • 7. Shojaei, K.: ‘Neural adaptive PID formation control of car-like mobile robots without velocity measurements’, Adv. Robot., 2017, 31, (18), pp. 947964.
    9. 9)
      • 1. Mei, J., Zheng, K., Zhao, L., et al: ‘Joint radio resource allocation and control for vehicle platooning in LTE-V2V network’, IEEE Trans. Veh. Technol., 2018, 67, (12), pp. 1221812230.
    10. 10)
      • 3. Gao, W., Odekunle, A., Chen, Y., et al: ‘Predictive cruise control of connected and autonomous vehicles via reinforcement learning’, IET Control Theory Applic., 2019, 13, (17), pp. 28492855.
    11. 11)
      • 8. Kayacan, E., Saeys, W., Ramon, H., et al: ‘Experimental validation of linear and nonlinear MPC on an articulated unmanned ground vehicle’, IEEE/ASME Trans. Mechatronics, 2018, 23, (5), pp. 20232030.
    12. 12)
      • 26. Bechlioulis, C.P., Rovithakis, G.A.: ‘Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance’, IEEE Trans. Autom. Control, 2008, 53, (9), pp. 20902099.
    13. 13)
      • 12. Kassaeiyan, P., Tarvirdizadeh, B., Alipour, K.: ‘Control of tractor–trailer wheeled robots considering self-collision effect and actuator saturation limitations’, Mech. Syst. Signal Process., 2019, 127, pp. 388411.
    14. 14)
      • 17. Khalaji, A.K.: ‘PID-based target tracking control of a tractor–trailer mobile robot’, Proc. Ins. Mech. Eng.C, J. Mech. Eng. Sci., 2019, 233, (13), pp. 47764787.
    15. 15)
      • 10. Kayacan, E., Ramon, H., Saeys, W.: ‘Robust trajectory tracking error model-based predictive control for unmanned ground vehicles’, IEEE/ASME Trans. Mechatronics, 2016, 21, (2), pp. 806814.
    16. 16)
      • 23. Du, J., Hu, X., Liu, H., et al: ‘Adaptive robust output feedback control for a marine dynamic positioning system based on a high-gain observer’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (11), pp. 27752786.
    17. 17)
      • 20. Yue, M., Hou, X., Gao, J., et al: ‘RBFNN-based identification and compensation mechanism for disturbance-like parametric friction with application to tractor–trailer vehicles’, Asian J. Control, 2019, 21, (6), pp. 113.
    18. 18)
      • 6. Shojaei, K.: ‘Neural adaptive output feedback formation control of type (m, s) wheeled mobile robots’, IET Control Theory Applic., 2017, 11, (4), pp. 504515.
    19. 19)
      • 25. Dai, S.L., He, S., Lin, H., et al: ‘Platoon formation control with prescribed performance guarantees for USVs’, IEEE Trans. Ind. Electron., 2018, 65, (5), pp. 42374246.
    20. 20)
      • 19. Keymasi-Khalaji, A., Jalalnezhad, M.: ‘Control of a tractor–trailer robot subjected to wheel slip’, Proc. Ins. Mech. Eng. K, J. Multi-body Dyn., 2019, 233, (4), pp. 956967.
    21. 21)
      • 15. Hou, X., Yue, M., Zhao, J., et al: ‘An ESO-based integrated trajectory tracking control for tractor–trailer vehicles with various constraints and physical limitations’, Int. J. Syst. Sci., 2018, 49, (15), pp. 32023215.
    22. 22)
      • 32. Chen, M.: ‘Disturbance attenuation tracking control for wheeled mobile robots with skidding and slipping’, IEEE Trans. Ind. Electron., 2017, 64, (4), pp. 33593368.
    23. 23)
      • 31. Ge, S.S., Zhang, J.: ‘Neural-network control of nonaffine nonlinear system with zero dynamics by state and output feedback’, IEEE Trans. Neural Netw., 2003, 14, (4), pp. 900918.
    24. 24)
      • 11. Abroshan, M., Taiebat, M., Goodarzi, A., et al: ‘Automatic steering control in tractor semi-trailer vehicles for low-speed maneuverability enhancement’, Proc. Ins. Mech. Eng. K, J. Multi-body Dyn., 2017, 231, (1), pp. 83102.
    25. 25)
      • 28. Elhaki, O., Shojaei, K.: ‘Neural network-based target tracking control of underactuated autonomous underwater vehicles with a prescribed performance’, Ocean Eng., 2018, 167, pp. 239256.
    26. 26)
      • 29. Hou, Q., Dong, J., Xi, C.: ‘Adaptive neural network tracking control for switched uncertain non-linear systems with actuator failures and time-varying delays’, IET Control Theory Applic., 2019, 13, (12), pp. 19291939.
    27. 27)
      • 14. Yue, M., Hou, X., Zhao, X., et al: ‘Robust tube-based model predictive control for lane change maneuver of tractor–trailer vehicles based on a polynomial trajectory’, IEEE Trans. Syst. Man Cybern.: Syst., 2018, 99, pp. 19.
    28. 28)
      • 30. Khalaji, A.K., Moosavian, S.A.A.: ‘Robust adaptive controller for a tractor–trailer mobile robot’, IEEE/ASME Trans. Mechatronics, 2014, 19, (3), pp. 943953.
    29. 29)
      • 24. Tee, K.P., Ge, S.S.: ‘Control of fully actuated ocean surface vessels using a class of feedforward approximators’, IEEE Trans. Control Syst. Technol., 2006, 14, (4), pp. 750756.
    30. 30)
      • 22. Zhou, S., Zhao, H., Chen, W., et al: ‘Robust path following of the tractor–trailers system in gps-denied environments’, IEEE Robot. Autom. Lett., 2020, 5, (2), pp. 500507.
    31. 31)
      • 27. Asl, H.J., Narikiyo, T., Kawanishi, M.: ‘Bounded-input prescribed performance control of uncertain euler–lagrange systems’, IET Control Theory Applic., 2019, 13, (1), pp. 1726.
    32. 32)
      • 35. Cheng, L., Hou, Z.G., Tan, M.: ‘Adaptive neural network tracking control for manipulators with uncertain kinematics, dynamics and actuator model’, Automatica, 2009, 45, (10), pp. 23122318.
    33. 33)
      • 5. Han, S.I.: ‘Prescribed consensus and formation error constrained finite-time sliding mode control for multi-agent mobile robot systems’, IET Control Theory Applic., 2018, 12, (2), pp. 282290.
    34. 34)
      • 2. Li, Y., Tang, C., Peeta, S., et al: ‘Integral-sliding-mode braking control for a connected vehicle platoon: theory and application’, IEEE Trans. Ind. Electron., 2019, 66, (6), pp. 46184628.
    35. 35)
      • 4. Jin, X.Z., Zhao, Y.X., Wang, H., et al: ‘Adaptive fault-tolerant control of mobile robots with actuator faults and unknown parameters’, IET Control Theory Applic., 2019, 13, (11), pp. 16651672.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.1403
Loading

Related content

content/journals/10.1049/iet-cta.2019.1403
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address