access icon free Orthotopic-filtering-based hierarchical fault diagnosis algorithm for linear recursive models

An orthotopic-filtering-based hierarchical fault diagnosis algorithm is proposed for complex systems with multiple fault types. The given algorithm uses an orthotopic method to describe a feasible parameter set and detects whether a fault occurs by determining whether the feasible parameter set is empty. Then the hierarchical clustering method is applied to analyse the fault library. The clustering result is used as the prior knowledge for fault diagnosis analysis, and a discriminant analysis is conducted layer by layer. Finally, a model-matching method is applied to realise the fault identification. However, if the fault type is not included in the fault library, the fault type is then added to the fault library. Therefore, when the fault diagnosis is performed again, the fault library is re-hierarchically clustered. The analysis on the false alarm rate and the missing detection rate of the fault diagnosis algorithm are also studied. Finally, the fault diagnosis of a buck circuit is taken as an example to demonstrate the effectiveness and feasibility of the proposed method by analysing the fault diagnosis results.

Inspec keywords: filtering theory; statistical analysis; fault diagnosis; pattern clustering

Other keywords: discriminant analysis; fault diagnosis analysis; orthotopic-filtering-based hierarchical fault diagnosis algorithm; fault identification; hierarchical clustering method; buck circuit; fault library

Subjects: Other topics in statistics; Signal processing theory; Other topics in statistics; Data handling techniques; Filtering methods in signal processing

References

    1. 1)
      • 20. Casini, M., Garulli, A., Vicino, A.: ‘A constraint selection technique for recursive set membership identification’, IFAC Proc., 2014, 47, (3), pp. 17901795.
    2. 2)
      • 25. Li, X.J., Yang, G.H.: ‘Robust fault detection and isolation for a class of uncertain single output non-linear systems’, IET Control Theory Appl., 2014, 8, (7), pp. 462470.
    3. 3)
      • 12. Xia, N., Yang, F., Han, Q.L.: ‘Distributed event-triggered networked set-membership filtering with partial information transmission’, IET Control Theory Appl., 2017, 11, (2), pp. 155163.
    4. 4)
      • 27. Li, L., Yang, L., Yang, Z.L., et al: ‘Mean-square error constrained approach to robust stochastic iterative learning control’, IET Control Theory Appl., 2017, 12, (1), pp. 3844.
    5. 5)
      • 10. Liu, Y., Yan, Z., Wu, F.: ‘Ellipsoidal state-bounding-based set-membership estimation for linear system with unknown-but-bounded disturbances’, IET Control Theory Appl., 2016, 10, (4), pp. 431442.
    6. 6)
      • 23. Hashimoto, M., Itaba, F., Takahashi, K.: ‘Model-based fault detection and isolation for a powered wheelchair’. Int. Symp. Communication, Limassol, Cyprus, 2010.
    7. 7)
      • 13. Tzes, A., Le, K.: ‘Adaptive performance/robust control design using orthotopic set membership identification for low-dimensional systems’, Int. J. Adapt. Control, 2015, 11, (8), pp. 649663.
    8. 8)
      • 17. Ravanbod, L., Jauberthie, C., Verdière, N., et al: ‘Improved solutions for ill-conditioned problems involved in set-membership estimation for fault detection and isolation’, J. Process Control, 2017, 58, pp. 139151.
    9. 9)
      • 5. Delpha, C., Diallo, D., , Al Samrout, H., et al: ‘Multiple incipient fault diagnosis in three-phase electrical systems using multivariate statistical signal processing’, Eng. Appl. Artif. Intel., 2018, 73, pp. 6879.
    10. 10)
      • 19. Shen, Y.X., Yin, T.J.: ‘A fault diagnosis method of set membership filter based on convex ploytope’, Control Decis., 2018, 33, (1), pp. 150156.
    11. 11)
      • 11. Liu, S., Wei, G., Song, Y., et al: ‘Set-membership state estimation subject to uniform quantization effects and communication constraints’, J. Franklin I., 2017, 354, (15), pp. 70127027.
    12. 12)
      • 8. Verbert, K., Babuska, R., De Schutter, B.: ‘Bayesian and dempster-shafer reasoning for knowledge-based fault diagnosis-a comparative study’, Eng. Appl. Artif. Intel., 2017, 60, pp. 136150.
    13. 13)
      • 22. Wang, S.Y., Chen, D.J., Ye, Y.Z.: ‘Research on fault prediction method of power electronic circuits based on particle swarm optimization RBF neural network’, Appl. Mech. Mater., 2014, 687–691, pp. 33543360.
    14. 14)
      • 2. Qiu, Y., Dai, Y.Y.: ‘A stacked auto-encoder based fault diagnosis model for chemical process’, Comput. Aided Chem. Eng., 2019, 46, pp. 13031308.
    15. 15)
      • 14. Casini, M., Garulli, A., Vicino, A.: ‘A linear programming approach to online set membership parameter estimation for linear regression models’, Int. J. Adapt. Control, 2017, 31, (3), pp. 360378.
    16. 16)
      • 7. Ayodeji, A., Liu, Y.K., Xia, H.: ‘Knowledge base operator support system for nuclear power plant fault diagnosis’, Prog. Nucl. Enegr., 2018, 105, pp. 4250.
    17. 17)
      • 15. Chatti, N., Guyonneau, R., Hardouin, L., et al: ‘Model-based approach for fault diagnosis using set-membership formulation’, Eng. Appl. Artif. Intel., 2016, 55, pp. 307319.
    18. 18)
      • 6. He, M., He, D., Qu, Y.: ‘A new signal processing and feature extraction approach for bearing fault diagnosis using AE sensors’, J. Fail. Anal. Prev., 2016, 16, (5), pp. 17.
    19. 19)
      • 26. Wang, Y.J., Ding, F.: ‘Iterative estimation for a non-linear IIR filter with moving average noise by means of the data filtering technique’, IMA J. Math. Control I, 2017, 34, (3), pp. 745764.
    20. 20)
      • 18. Reppa, V., Tzes, A.: ‘Fault diagnosis based on set membership identification using output-error models’, Int. J. Adapt. Control, 2016, 30, (2), pp. 224255.
    21. 21)
      • 9. Fernandez-Canti Rosa, M., Tornil-Sin, S., Blesa, J., et al: ‘Non-linear set-membership identification approach based on the Bayesian framework’, IET Control Theory Appl., 2015, 9, (9), pp. 13921398.
    22. 22)
      • 21. Jiang, Y.Y., Wang, Y.R., Luo, H., et al: ‘An innovative metric for power electronic circuit failure evaluation and a novel prediction method based on LSSVM’, T. China El. Soc., 2012, 27, (12), pp. 4350.
    23. 23)
      • 1. Shi, P., Wu, Y., Jiang, B.: ‘Incipient fault diagnosis for T-S fuzzy systems with application to high-speed railway traction devices’, IET Control Theory Appl., 2016, 10, (17), pp. 22862297.
    24. 24)
      • 16. Schwab, S., Puig, V., Hohmann, S.: ‘A robust fault detection method using a zonotopic kaucher set-membership approach’, IFAC-PapersOnLine, 2018, 51, (24), pp. 500507.
    25. 25)
      • 24. Yoo, S.J.: ‘Actuator fault detection and adaptive accommodation control of flexible-joint robots’, IET Control Theory Appl., 2012, 6, (10), pp. 14971507.
    26. 26)
      • 3. Jiang, H.L., Liu, G.H., Li, J., et al: ‘Model based fault diagnosis for drillstring washout using iterated unscented Kalman filter’, J. Petrol. Sci. Eng., 2019, 180, pp. 246256.
    27. 27)
      • 4. Liu, Y., Wang, Z.D., Zhou, D.H.: ‘State estimation and fault reconstruction with integral measurements under partially decoupled disturbances’, IET Control Theory Appl., 2018, 12, (10), pp. 15201526.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.1229
Loading

Related content

content/journals/10.1049/iet-cta.2019.1229
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading