Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Mixed control of delayed Markov jump linear systems

This study investigates the state feedback control laws for Markov jump linear systems with state and mode-observation delays. An assumption in this study is that the delay of the mode observation obeys an exponential distribution. Also, the authors raise an unknown time-varying state delay applied in the composition of the state feedback controller. A method of remodelling the closed-loop system as a standard Markov jump linear system with state delay is shown. Furthermore, on the basis of this remodelling, several linear matrix inequalities for designing feedback gains for stabilisation and mixed control are proposed. Finally, the authors apply a numerical simulation for examining the effectiveness of the proposed mixed controller designing method.

References

    1. 1)
      • 5. Mhaskar, P., El-Farra, N., Christofides, P.: ‘Robust predictive control of switched systems: satisfying uncertain schedules subject to state and control constraints’, Int. J. Adapt. Control Signal Process., 2008, 22, (2), pp. 161179.
    2. 2)
      • 10. Xiong, J., Lam, J.: ‘Stabilization of discrete-time Markovian jump linear systems via time-delayed controllers’, Automatica, 2006, 42, (5), pp. 747753.
    3. 3)
      • 15. Chen, W., Zheng, W., Shen, Y.: ‘Delay-dependent stochastic stability and H-control of uncertain neutral stochastic systems with time delay’, IEEE Trans. Autom. Control, 2009, 54, (7), pp. 16601667.
    4. 4)
      • 13. Cetinkaya, A., Hayakawa, T.: ‘Sampled-mode-dependent time-varying control strategy for stabilizing discrete-time switched stochastic systems’. 2014 American Control Conf., Portland, USA, June 2014, pp. 39663971.
    5. 5)
      • 22. Aliyu, M., Boukas, E.: ‘Mixed H2/H stochastic control problem’, IFAC Proc., 1999, 32, (2), pp. 49294934.
    6. 6)
      • 14. Lou, X., Cui, B.: ‘Delay-dependent stochastic stability of delayed Hopfield neural networks with Markovian jump parameters’, J. Math. Anal. Appl., 2007, 328, (1), pp. 316326.
    7. 7)
      • 2. Mahmoud, S., Shi, P.: ‘Robust stability, stabilization and H control of time-delay systems with Markovian jump parameters’, Int. J. Robust Nonlinear Control, 2003, 784, (8), pp. 755784.
    8. 8)
      • 7. Cao, Y., Lam, J.: ‘Stochastic stabilizability and H control for discrete-time jump linear systems with time delay’, J. Franklin Inst., 1999, 336, (8), pp. 12631281.
    9. 9)
      • 28. Mahmoud, M., A L-Sunni, F., Shi, Y.: ‘Mixed control of uncertain jumping time-delay systems’, J. Franklin Inst., 2008, 345, (5), pp. 536552.
    10. 10)
      • 17. Hien, L., Trinh, H.: ‘Delay-dependent stability and stabilisation of two-dimensional positive Markov jump systems with delays’, IET Control Theory Applic., 2017, 11, (10), pp. 16031610.
    11. 11)
      • 24. Luan, X., Zhao, S., Liu, F.: ‘H control for discrete-time Markov jump systems with uncertain transition probabilities’, IEEE Trans. Autom. Control, 2012, 58, (6), pp. 15661572.
    12. 12)
      • 20. Xie, X., Lam, J., Fan, C.: ‘Robust time-weighted guaranteed cost control of uncertain periodic piecewise linear systems’, Inf. Sci., 2018, 460, pp. 238253.
    13. 13)
      • 26. Feng, X., Loparo, K., Ji, Y., et al: ‘Stochastic stability properties of jump linear systems’, IEEE Trans. Autom. Control, 1992, 37, (1), pp. 3853.
    14. 14)
      • 4. Zhao, X., Zeng, Q.: ‘New robust delay-dependent stability and H analysis for uncertain Markovian jump systems with time-varying delays’, J. Franklin Inst., 2010, 347, (5), pp. 863874.
    15. 15)
      • 21. Chen, B., Liu, P.: ‘Delay-dependent H2/H control for a class of switched TS fuzzy systems with time-delay’, IEEE Trans. Fuzzy Syst., 2005, 13, (4), pp. 544556.
    16. 16)
      • 25. Ma, S., Zhang, C.: ‘H control for discrete-time singular Markov jump systems subject to actuator saturation’, J. Franklin Inst., 2012, 349, (3), pp. 10111029.
    17. 17)
      • 8. Cao, Y., Lam, J.: ‘Robust H control of uncertain Markovian jump systems with time-delay’, IEEE Trans. Autom. Control, 2000, 45, (1), pp. 7783.
    18. 18)
      • 12. Cetinkaya, A., Hayakawa, T.: ‘Stabilizing discrete-time switched linear stochastic systems using periodically available imprecise mode information’. 2013 American Control Conf., Washington, USA, June 2013, pp. 32663271.
    19. 19)
      • 23. Boukas, E.: ‘H control of discrete-time Markov jump systems with bounded transition probabilities’, Opt. Control Appl. Methods, 2009, 30, (5), pp. 477494.
    20. 20)
      • 19. Park, B., Kwon, N., Park, P.: ‘Stabilization of Markovian jump systems with incomplete knowledge of transition probabilities and input quantization’, J. Franklin Inst., 2015, 352, (10), pp. 43544365.
    21. 21)
      • 1. Farias, D., Geromel, J., Do Val, J., et al: ‘Output feedback control of Markov jump linear systems in continuous-time’, IEEE Trans. Autom. Control, 2000, 45, (2), pp. 944949.
    22. 22)
      • 6. Shi, P., Boukas, E.K., Liu, Z.K.: ‘Delay-dependent stability and output feedback stabilisation of Markov jump system with time-delay’, IEE Proc. Control Theory Applic., 2002, 149, (5), pp. 379386.
    23. 23)
      • 16. Sakthivel, R., Harshavarthini, S., Kavikumar, R., et al: ‘Robust tracking control for fuzzy Markovian jump systems with time-varying delay and disturbances’, IEEE Access, 2018, 6, pp. 6686166869.
    24. 24)
      • 9. Chen, W., Guan, Z., Yu, P.: ‘Delay-dependent stability and H control of uncertain discrete-time Markovian jump systems with mode-dependent time delays’, Syst. Control Lett., 2004, 52, (5), pp. 361376.
    25. 25)
      • 3. Xu, S., Lam, J., Mao, X.: ‘Delay-dependent H control and filtering for uncertain Markovian jump systems with time-varying delays’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2007, 54, (9), pp. 20702077.
    26. 26)
      • 27. Mahmoud, M., Al-Muthairi, N.: ‘Design of robust controllers for time-delay systems’, IEEE Trans. Autom. Control, 1994, 39, (5), pp. 995999.
    27. 27)
      • 18. Sakthivela, R., Sakthivel, R., Nithyaa, V., et al: ‘Fuzzy sliding mode control design of Markovian jump systems with time-varying delay’, J. Franklin Inst., 2018, 335, (14), pp. 63536370.
    28. 28)
      • 11. Cetinkaya, A., Hayakawa, T.: ‘Discrete-time switched stochastic control systems with randomly observed operation mode’. 52nd IEEE Conf. on Decision and Control, Florence, Italy, December 2013, pp. 8590.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.1162
Loading

Related content

content/journals/10.1049/iet-cta.2019.1162
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address