Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Robustness of continuous non-smooth finite-time Lyapunov control for two-level quantum systems

The robustness of continuous non-smooth Lyapunov control for two-level quantum systems with uncertainties in the Hamiltonians is analysed in this study. The authors first transform a perturbed two-level system into a real-variable system by expressing the quantum state in terms of its complex exponential and then present two theorems to describe the behaviour of solutions of the perturbed system after a certain finite time by combining the Lyapunov and converse Lyapunov finite-time stability theorems with the homogeneity theory. Numerical simulation experiments on a spin- particle system show the effectiveness of the results obtained in this study.

References

    1. 1)
      • 24. Li, J.-S., Khaneja, N.: ‘Ensemble control of Bloch equations’, IEEE Trans. Autom. Control, 2009, 54, (3), pp. 528536.
    2. 2)
      • 3. Wen, J., Shi, Y., Lu, X.: ‘Stabilizing a class of mixed states for stochastic quantum systems via switching control’, J. Franklin Inst., 2018, 355, (5), pp. 25622582.
    3. 3)
      • 40. Ding, S., Li, S., Li, Qi.: ‘Stability analysis for a second-order continuous finite-time control system subject to a disturbance’, J. Control Theory Appl., 2009, 7, (3), pp. 271276.
    4. 4)
      • 14. Zhang, G., James, M.R.: ‘Direct and indirect couplings in coherent feedback control of linear quantum systems’, IEEE Trans. Autom. Control, 2010, 56, (7), pp. 15351550.
    5. 5)
      • 27. Ruths, J., Li, J.-S.: ‘Optimal control of inhomogeneous ensembles’, IEEE Trans. Autom. Control, 2012, 57, (8), pp. 20212032.
    6. 6)
      • 44. Khalil, H.K.: ‘Nonlinear systems’ (Prentice Hall, Upper Saddle River, NJ, USA, 2002).
    7. 7)
      • 8. Wang, X., Schirmer, S.G.: ‘Analysis of effectiveness of Lyapunov control for non-generic quantum states’, IEEE Trans. Autom. Control, 2010, 55, (10), pp. 14061411.
    8. 8)
      • 10. Kuang, S., Dong, D., Petersen, I.R.: ‘Lyapunov control of quantum systems based on energy-level connectivity graphs’, IEEE Trans. Control Syst. Technol., 2019, 27, (6), pp. 23152329.
    9. 9)
      • 13. Zhou, J., Kuang, S.: ‘Feedback preparation of maximally entangled states of two-qubit systems’, IET Control Theory Appl., 2016, 10, (3), pp. 339345.
    10. 10)
      • 16. James, M.R., Nurdin, H.I., Petersen, I.R.: ‘H control of linear quantum stochastic systems’, IEEE Trans. Autom. Control, 2008, 53, (8), pp. 17871803.
    11. 11)
      • 37. Yang, J., Li, S., Su, J., et al: ‘Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances’, Automatica, 2013, 49, (7), pp. 22872291.
    12. 12)
      • 26. Ruths, J., Li, J.-S.: ‘A multidimensional pseudospectral method for optimal control of quantum ensembles’, J. Chem. Phys., 2011, 134, (4), p. 044128.
    13. 13)
      • 1. Wiseman, H.M., Milburn, G.J.: ‘Quantum measurement and control’ (Cambridge University Press, Cambridge, 2009).
    14. 14)
      • 18. James, M.R.: ‘Risk-sensitive optimal control of quantum systems’, Phys. Rev. A, 2004, 69, (3), p. 032108.
    15. 15)
      • 31. Dong, D., Xing, X., Ma, H., et al: ‘Learning-based quantum robust control: algorithm, applications, and experiments’, IEEE Trans. Cybern., 2020, 50, (8), pp. 35813593.
    16. 16)
      • 9. Zhao, S., Lin, H., Xue, Z.: ‘Switching control of closed quantum systems via the Lyapunov method’, Automatica, 2012, 48, (8), pp. 18331838.
    17. 17)
      • 25. Sakai, R., Soeda, A., Murao, M., et al: ‘Robust controllability of two-qubit Hamiltonian dynamics’, Phys. Rev. A, 2019, 100, (4), p. 042305.
    18. 18)
      • 32. Huang, X., Lin, W., Yang, B.: ‘Global finite-time stabilization of a class of uncertain nonlinear systems’, Automatica, 2005, 41, (5), pp. 881888.
    19. 19)
      • 2. Dong, D., Petersen, I.R.: ‘Quantum control theory and applications: a survey’, IET Control Theory Appl., 2010, 4, (12), pp. 26512671.
    20. 20)
      • 41. Kuang, S., Guan, X., Dong, D.: ‘Finite-time stabilization control of quantum systems’, arXiv: http://arxiv.org/abs/1910.00208.
    21. 21)
      • 17. Zhang, H., Rabitz, H.: ‘Robust optimal control of quantum molecular systems in the presence of disturbances and uncertainties’, Phys. Rev. A, 1994, 49, (4), pp. 22412254.
    22. 22)
      • 23. Li, J.-S., Khaneja, N.: ‘Control of inhomogeneous quantum ensembles’, Phys. Rev. A, 2006, 73, (3), p. 030302.
    23. 23)
      • 33. Fu, J., Ma, R., Chai, T.: ‘Adaptive finite-time stabilization of a class of uncertain nonlinear systems via logic-based switchings’, IEEE Trans. Autom. Control, 2017, 62, (11), pp. 59986003.
    24. 24)
      • 43. Bhat, S.P., Bernstein, D.S.: ‘Finite-time stability of homogeneous systems’. Proc. 1997 American Control Conf., Albuquerque, New Mexico, USA, 1997, pp. 25132514.
    25. 25)
      • 20. Dong, D., Petersen, I.R.: ‘Sliding mode control of two-level quantum systems’, Automatica, 2012, 48, (5), pp. 725735.
    26. 26)
      • 12. Zhang, J., Liu, Y., Wu, R.B., et al: ‘Quantum feedback: theory, experiments, and applications’, Phys. Rep., 2017, 679, pp. 160.
    27. 27)
      • 42. Cong, S., Kuang, S.: ‘Quantum control strategy based on state distance’, Acta Autom. Sin., 2007, 33, (1), pp. 2831.
    28. 28)
      • 36. Yu, S., Yu, X., Shirinzadeh, B., et al: ‘Continuous finite-time control for robotic manipulators with terminal sliding mode’, Automatica, 2005, 41, (11), pp. 19571964.
    29. 29)
      • 21. Xiang, C., Petersen, I.R., Dong, D.: ‘Coherent robust H control of linear quantum systems with uncertainties in the Hamiltonian and coupling operators’, Automatica, 2017, 81, pp. 821.
    30. 30)
      • 15. D'Helon, C., James, M.R.: ‘Stability, gain, and robustness in quantum feedback networks’, Phys. Rev. A, 2006, 73, (5), p. 053803.
    31. 31)
      • 4. Stefanatos, D.: ‘Optimal shortcuts to adiabaticity for a quantum piston’, Automatica, 2013, 49, (10), pp. 30793083.
    32. 32)
      • 19. Dong, D., Petersen, I.R.: ‘Sliding mode control of quantum systems’, New J. Phys., 2009, 11, (10), p. 105033.
    33. 33)
      • 6. Wu, R.B., Chu, B., Owens, D.H., et al: ‘Data-driven gradient algorithm for high-precision quantum control’, Phys. Rev. A, 2018, 97, (4), p. 042122.
    34. 34)
      • 7. Kuang, S., Dong, D., Petersen, I.R.: ‘Rapid Lyapunov control of finite-dimensional quantum systems’, Automatica, 2017, 81, pp. 164175.
    35. 35)
      • 30. Wu, R.B., Ding, H., Dong, D., et al: ‘Learning robust and high-precision quantum controls’, Phys. Rev. A, 2019, 99, (4), p. 042327.
    36. 36)
      • 34. Bhat, S.P., Bernstein, D.S.: ‘Geometric homogeneity with applications to finite-time stability’, Math. Control Signal Syst., 2005, 17, (2), pp. 101127.
    37. 37)
      • 38. Bhat, S.P., Bernstein, D.S.: ‘Finite-time stability of continuous autonomous systems’, SIAM J. Control Optim., 2000, 38, (3), pp. 751766.
    38. 38)
      • 11. Qi, B., Pan, H., Guo, L.: ‘Further results on stabilizing control of quantum systems’, IEEE Trans. Autom. Control, 2012, 58, (5), pp. 13491354.
    39. 39)
      • 22. Lu, X., Kuang, S.: ‘Coherent H control for linear quantum passive systems with model uncertainties’, IET Control Theory Appl., 2019, 13, (5), pp. 711720.
    40. 40)
      • 5. Li, J., Yang, X., Peng, X., et al: ‘Hybrid quantum-classical approach to quantum optimal control’, Phys. Rev. Lett., 2017, 118, (15), p. 150503.
    41. 41)
      • 28. Chen, C., Dong, D., Long, R., et al: ‘Sampling-based learning control of inhomogeneous quantum ensembles’, Phys. Rev. A, 2014, 89, (2), p. 023402.
    42. 42)
      • 39. Harshal, B.O., Yury, V.O., Sarah, K.S.: ‘On robustness of a class of homogeneous continuous finite time controllers’. Proc. the IEEE Conf. on Decision and Control, Los Angeles, California, USA, 2014, pp. 62796284.
    43. 43)
      • 29. Kuang, S., Qi, P., Cong, S.: ‘Approximate time-optimal control of quantum ensembles based on sampling and learning’, Phys. Lett. A, 2018, 382, (28), pp. 18581863.
    44. 44)
      • 35. Yin, J., Khoo, S., Man, Z.: ‘Finite-time stability theorems of homogeneous stochastic nonlinear systems’, Syst. Control Lett., 2017, 100, (2), pp. 613.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.1156
Loading

Related content

content/journals/10.1049/iet-cta.2019.1156
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address