access icon free Practical model-free robust estimation and control design for an underwater soft IPMC actuator

In the trend of the recent development of soft actuators, ionic polymer metal composite (IPMC) is considered as one of the new and innovative soft materials. The IPMC is suited to be utilised in medical micro robots and bio-inspired aquatic robotics. It is distinguished by nimble, soft, silent, flexible and lightweight properties. In fact, for the IPMC actuator, hysteresis and creep non-linearities are inevitable; and it is a great challenge to handle them and to achieve high-precision tracking in the control design, especially when the internal system morphology is complex and not fully understood. This study proposes a new model-free control approach for an underwater IPMC actuator to overcome the lack of its exact model and to achieve accurate trajectory tracking. This approach is synthesised based on a non-linear extended state observer technique to estimate lumped uncertainties and disturbances. Furthermore, a sliding mode controller is added as an extra input to deal with the estimation error and to assure the tracking robustness. Finally, the proposed control is experimentally verified to show its effectiveness in comparison with a non-singular terminal sliding mode controller. The experimental results indicate that the proposed controller is capable of delivering good tracking accuracy with strong robustness.

Inspec keywords: microrobots; mobile robots; underwater vehicles; observers; robot dynamics; nonlinear control systems; robust control; motion control; control system synthesis; variable structure systems; actuators

Other keywords: estimation error; tracking robustness; new materials; soft properties; innovative soft materials; internal system morphology; exact model; soft actuators; control design; model-free control approach; ionic polymer metal composite; superior advantages; accurate trajectory tracking; strong robustness; practical model-free; high-precision tracking; nonsingular terminal sliding mode controller; bio-inspired aquatic robotics; underwater soft IPMC actuator; nonlinearities; good tracking accuracy; lightweight properties; underwater IPMC actuator; nimble properties; silent properties; nonlinear extended state observer technique; flexible properties

Subjects: Spatial variables control; Multivariable control systems; Robot and manipulator mechanics; Stability in control theory; Nonlinear control systems; Control system analysis and synthesis methods; Mobile robots

References

    1. 1)
      • 4. Olsen, Z.J., Kim, K.J.: ‘A reduced dimensional mapping approach for modeling IPMCS with computational efficiency and rapid design development applications’, Smart Mater. Struct., 2018, 27, (12), p. 125012.
    2. 2)
      • 30. Hosseini-Pishrobat, M., Keighobadi, J.: ‘Robust vibration control and angular velocity estimation of a single-axis mems gyroscope using perturbation compensation’, J. Intell. Robot. Syst., 2019, 94, (1), pp. 6179.
    3. 3)
      • 31. Khawwaf, J., Zheng, J., Lu, R., et al: ‘Robust tracking control of an ipmc actuator using nonsingular terminal sliding mode’, Smart Mater. Struct., 2017, 26, (9), p. 095042.
    4. 4)
      • 3. Chen, L., Zhang, Y., Zhou, C., et al: ‘Aerodynamic mechanisms in bio-inspired micro air vehicles: a review in the light of novel compound layouts’, IET Cyber-Syst. Robot., 2019, 1, (1), pp. 212.
    5. 5)
      • 23. Baek, J., Jin, M., Han, S.: ‘A new adaptive sliding-mode control scheme for application to robot manipulators’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 36283637.
    6. 6)
      • 28. Ali, M., Alexander, C.: ‘Robust tracking control of a robot manipulator using a passivity-based extended-state observer approach’, IET Cyber-Syst. Robot., 2019, 1, (2), pp. 6371.
    7. 7)
      • 13. Punning, A., Kim, K.J., Palmre, V., et al: ‘Ionic electroactive polymer artificial muscles in space applications’, Sci. Rep., 2014, 4, p. 6913.
    8. 8)
      • 26. Zachi, A.R., Correia, C.A.M., JairLuiz-Filho, A., et al: ‘Robust disturbance rejection controller for systems with uncertain parameters’, IET Control Theory Applic., 2019, 13, (13), pp. 19952007.
    9. 9)
      • 29. Zhao, L., Yang, Y., Xia, Y., et al: ‘Active disturbance rejection position control for a magnetic rodless pneumatic cylinder’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 58385846.
    10. 10)
      • 21. McDaid, A., Aw, K., Xie, S., et al: ‘Gain scheduled control of IPMC actuators with ‘model-free’ iterative feedback tuning’, Sens. Actuators A, 2010, 164, (1-2), pp. 137147.
    11. 11)
      • 24. Xu, Q., Cao, Z.: ‘Piezoelectric positioning control with output-based discrete-time terminal sliding mode control’, IET Control Theory Applic., 2017, 11, (5), pp. 694702.
    12. 12)
      • 15. Richardson, R.C., Levesley, M.C., Brown, M.D., et al: ‘Control of ionic polymer metal composites’, IEEE/ASME Trans. Mechatronics, 2003, 8, (2), pp. 245253.
    13. 13)
      • 5. Wang, H.: ‘Application of intelligent materials in the control system’, J. Comput. Theor. Nanosci., 2015, 12, (9), pp. 28302836.
    14. 14)
      • 14. Deng, M., Wang, A.: ‘Robust non-linear control design to an ionic polymer metal composite with hysteresis using operator-based approach’, IET Control Theory Applic., 2012, 6, (17), pp. 26672675.
    15. 15)
      • 25. Wang, J., Li, S., Yang, J., et al: ‘Extended state observer-based sliding mode control for pwm-based dc–dc buck power converter systems with mismatched disturbances’, IET Control Theory Applic., 2015, 9, (4), pp. 579586.
    16. 16)
      • 17. Chen, X.: ‘Discrete-time adaptive control design for ionic polymer-metal composite actuators’, IEEE Access, 2018, 6, pp. 2811428121.
    17. 17)
      • 18. Bernat, J., Kolota, J.: ‘Adaptive observer-based control for an ipmc actuator under varying humidity conditions’, Smart Mater. Struct., 2018, 27, (5), p. 055004.
    18. 18)
      • 20. McDaid, A.J., Aw, K.C., Haemmerle, E., et al: ‘Control of ipmc actuators for microfluidics with adaptive ‘online’ iterative feedback tuning’, IEEE/ASME Trans Mechatronics, 2012, 17, (4), pp. 789797.
    19. 19)
      • 1. Jain, R.K., Khan, A., Asiri, A.M.: ‘Design and development of non-perfluorinated ionic polymer metal composite-based flexible link manipulator for robotics assembly’, Polym. Compos., 2019, 40, (7), pp. 25822593.
    20. 20)
      • 22. Ma, H., Liu, C., Liu, Y., et al: ‘Sliding mode control for uncertain discrete-time systems based on fractional order reaching law’, IET Control Theory Applic., 2019, 13, (13), pp. 19631970.
    21. 21)
      • 10. Cheong, H.R., Teo, C.Y., Leow, P.L., et al: ‘Wireless-powered electroactive soft microgripper’, Smart Mater. Struct., 2018, 27, (5), p. 055014.
    22. 22)
      • 34. Nemat-Nasser, S., Wu, Y.: ‘Tailoring the actuation of ionic polymer–metal composites’, Smart Mater. Struct., 2006, 15, (4), p. 909.
    23. 23)
      • 16. Chen, Z., Tan, X.: ‘A control-oriented and physics-based model for ionic polymer–metal composite actuators’, IEEE/ASME Trans Mechatronics, 2008, 13, (5), pp. 519529.
    24. 24)
      • 6. Mirfakhrai, T., Madden, J.D., Baughman, R.H.: ‘Polymer artificial muscles’, Mater. Today, 2007, 10, (4), pp. 3038.
    25. 25)
      • 32. MohammadRidha, T., Ait-Ahmed, M., Chaillous, L., et al: ‘Model free ipid control for glycemia regulation of type-1 diabetes’, IEEE Trans. Biomed Eng., 2018, 65, (1), pp. 199206.
    26. 26)
      • 33. Z, Gao: ‘Active disturbance rejection control: a paradigm shift in feedback control system design’. Proc. IEEE American Control Conf., Minneapolis, MN, USA, June 2006, pp. 23992405.
    27. 27)
      • 2. Kodaira, A., Asaka, K., Horiuchi, T., et al: ‘Ipmc monolithic thin film robots fabricated through a multi-layer casting process’, IEEE Robot Autom. Lett., 2019, 4, (2), pp. 13351342.
    28. 28)
      • 9. Mousavi, M.S.S., Karami, A.H., Ghasemnejad, M., et al: ‘Design of a remote-control drug delivery implantable chip for cancer local on demand therapy using ionic polymer metal composite actuator’, J. Mech. Behav. Biomed. Mater., 2018, 86, pp. 250256.
    29. 29)
      • 12. Aw, K., McDaid, A.: ‘Bio-applications of ionic polymer metal composite transducers’, Smart Mater. Struct., 2014, 23, (7), pp. 112.
    30. 30)
      • 11. Shen, Q., Wang, T., Kim, K.J.: ‘A biomimetic underwater vehicle actuated by waves with ionic polymer–metal composite soft sensors’, Bioinspiration Biomimetics, 2015, 10, (5), p. 055007.
    31. 31)
      • 19. Huang, L., Hu, Y., Zhao, Y., et al: ‘Modeling and control of IPMC actuators based on lssvm-narx paradigm’, Mathematics, 2019, 7, (8), p. 741.
    32. 32)
      • 8. Wang, J., McDaid, A.J., Lu, C.Z., et al: ‘A compact ionic polymer-metal composite (IPMC) actuated valveless pump for drug delivery’, IEEE/ASME Trans. Mechatronics, 2017, 22, (1), pp. 196205.
    33. 33)
      • 7. Kim, K.J., Shahinpoor, M.: ‘Ionic polymer–metal composites: II. Manufacturing techniques’, Smart Mater. Struct., 2003, 12, (1), p. 65.
    34. 34)
      • 27. Godbole, A.A., Kolhe, J.P., Talole, S.E.: ‘Performance analysis of generalized extended state observer in tackling sinusoidal disturbances’, IEEE Trans. Control Syst. Technol., 2013, 21, (6), pp. 22122223.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.1147
Loading

Related content

content/journals/10.1049/iet-cta.2019.1147
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading