Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Disturbance decoupling control design for Boolean control networks: a Boolean algebra approach

The disturbance decoupling problem (DDP) whereby the system outputs become insensitive to exogenous signals or disturbances plays a vital role in systems engineering and biological systems. Notably, many biological signalling systems with multiple outputs are usually susceptible to external environmental changes. The authors investigate the DDP for Boolean control networks (BCNs) and present a novel technique based on Boolean algebra to solve the DDP. In particular, the results on the DDP solvability are derived by transforming the system dynamics to a simplified form called output-friendly form. Furthermore, a constructive procedure based on the Karnaugh map to design all possible feedback controllers such that the states affecting the outputs are free from disturbances is proposed. Moreover, the presented results are extended to switched BCNs, and design all possible mode-independent feedback controllers. Finally, some examples including a Boolean model of Escherichia coli are provided to validate the main findings.

References

    1. 1)
      • 48. Li, F., Tang, Y.: ‘Set stabilization for switched Boolean control networks’, Automatica, 2017, 78, pp. 223230.
    2. 2)
      • 27. Ma, Y., Han, R.: ‘Algorithms for set stabilisation of Boolean control networks’, IET Control Theory Applic., 2018, 12, (10), pp. 15271532.
    3. 3)
      • 38. Liu, Y., Li, B., Lu, J., et al: ‘Pinning control for the disturbance decoupling problem of Boolean networks’, IEEE Trans. Autom. Control, 2017, 62, (12), pp. 65956601.
    4. 4)
      • 13. Commault, C., Dion, J.M., Perez, A.: ‘Disturbance rejection for structured systems’, IEEE Trans. Autom. Control, 1991, 36, (7), pp. 884887.
    5. 5)
      • 34. Yang, M., Li, R., Chu, T.: ‘Controller design for disturbance decoupling of Boolean control networks’, Automatica, 2013, 49, (1), pp. 273277.
    6. 6)
      • 32. Li, R., Chu, T.: ‘Complete synchronization of Boolean networks’, IEEE Trans. Neural Netw. Learn. Syst., 2012, 23, (5), pp. 840846.
    7. 7)
      • 26. Li, H., Wang, Y.: ‘Output feedback stabilization control design for Boolean control networks’, Automatica, 2013, 49, (12), pp. 36413645.
    8. 8)
      • 8. Harris, S.E., Sawhill, B.K., Wuensche, A., et al: ‘A model of transcriptional regulatory networks based on biases in the observed regulation rules’, Complexity, 2002, 7, (4), pp. 2340.
    9. 9)
      • 25. Li, R., Yang, M., Chu, T.: ‘State feedback stabilization for Boolean control networks’, IEEE Trans. Autom. Control, 2013, 58, (7), pp. 18531857.
    10. 10)
      • 6. Chaves, M., Albert, R., Sontag, E.D.: ‘Robustness and fragility of Boolean models for genetic regulatory networks’, J. Theor. Biol., 2005, 235, (3), pp. 431449.
    11. 11)
      • 33. Cheng, D.: ‘Disturbance decoupling of Boolean control networks’, IEEE Trans. Autom. Control, 2011, 56, (1), pp. 210.
    12. 12)
      • 40. Khatri, C., Rao, C.R.: ‘Solutions to some functional equations and their applications to characterization of probability distributions’, Sankhyā: Indian J. Stat. A, 1968, 30, (2), pp. 167180.
    13. 13)
      • 35. Li, H., Wang, Y., Xie, L., et al: ‘Disturbance decoupling control design for switched Boolean control networks’, Syst. Control Lett., 2014, 72, pp. 16.
    14. 14)
      • 4. Chai, L.E., Loh, S.K., Low, S.T., et al: ‘A review on the computational approaches for gene regulatory network construction’, Comput. Biol. Med., 2014, 48, pp. 5565.
    15. 15)
      • 52. Li, Y., Li, H., Duan, P.: ‘Synchronization of switched logical control networks via event-triggered control’, J. Franklin Inst., 2018, 355, (12), pp. 52035216.
    16. 16)
      • 39. Li, B., Liu, Y., Kou, K.I., et al: ‘Event-triggered control for the disturbance decoupling problem of Boolean control networks’, IEEE Trans. Cybern., 2018, 48, (9), pp. 27642769.
    17. 17)
      • 42. Sarda, K., Yerudkar, A., Del-Vecchio, C., et al: ‘Subspace and coordinate transformation for Boolean control networks using binary logic’. 2019 27th Mediterranean Conf. on Control and Automation (MED), 2019, pp. 328333.
    18. 18)
      • 36. Meng, M., Feng, J.e.: ‘Topological structure and the disturbance decoupling problem of singular Boolean networks’, IET Control Theory Applic., 2014, 8, (13), pp. 12471255.
    19. 19)
      • 2. Dolgov, S., Khoromskij, B.: ‘Simultaneous state-time approximation of the chemical master equation using tensor product formats’, Numer. Linear Algebra Appl., 2015, 22, (2), pp. 197219.
    20. 20)
      • 45. Rushdi, A.M., Al-Yahya, H.A.: ‘A Boolean minimization procedure using the variable-entered Karnaugh map and the generalized consensus concept’, Int. J. Electron., 2000, 87, (7), pp. 769794.
    21. 21)
      • 21. Laschov, D., Margaliot, M.: ‘Controllability of Boolean control networks via the Perron–Frobenius theory’, Automatica, 2012, 48, (6), pp. 12181223.
    22. 22)
      • 12. Fabian, E., Wonham, W.: ‘Decoupling and disturbance rejection’, IEEE Trans. Autom. Control, 1975, 20, (3), pp. 399401.
    23. 23)
      • 14. Conte, G., Perdon, A.M.: ‘The disturbance decoupling problem for systems over a ring’, SIAM J. Control Optim., 1995, 33, (3), pp. 750764.
    24. 24)
      • 41. Subrahmanyam, N.: ‘Boolean vector spaces-I’, Math. Z., 1964, 83, (5), pp. 422433.
    25. 25)
      • 51. Yerudkar, A., Del-Vecchio, C., Glielmo, L.: ‘Output tracking control design of switched Boolean control networks’, IEEE Control Syst. Lett., 2019, 4, (2), pp. 355360.
    26. 26)
      • 30. Yang, J., Lu, J., Li, L., et al: ‘Event-triggered control for the synchronization of Boolean control networks’, Nonlinear Dyn., 2019, 96, (2), pp. 13351344.
    27. 27)
      • 7. Shen-Orr, S.S., Milo, R., Mangan, S., et al: ‘Network motifs in the transcriptional regulation network of Escherichia coli’, Nat. Genetics, 2002, 31, (1), p. 64.
    28. 28)
      • 50. Yerudkar, A., Del-Vecchio, C., Glielmo, L.: ‘Feedback stabilization control design for switched Boolean control networks’, Automatica, 2020, 116, p. 108934.
    29. 29)
      • 5. Kauffman, S.A.: ‘Metabolic stability and epigenesis in randomly constructed genetic nets’, J. Theor. Biol., 1969, 22, (3), pp. 437467.
    30. 30)
      • 1. De-Jong, H.: ‘Modeling and simulation of genetic regulatory systems: a literature review’, J. Comput. Biol., 2002, 9, (1), pp. 67103.
    31. 31)
      • 24. Cheng, D., Qi, H., Li, Z., et al: ‘Stability and stabilization of Boolean networks’, Int. J. Robust Nonlinear Control, 2011, 21, (2), pp. 134156.
    32. 32)
      • 17. Yurtseven, E., Heemels, W., Camlibel, M.K.: ‘Disturbance decoupling of switched linear systems’, Syst. Control Lett., 2012, 61, (1), pp. 6978.
    33. 33)
      • 19. Cheng, D., Qi, H., Li, Z.: ‘Analysis and control of Boolean networks: a semi-tensor product approach’ (Springer Science & Business Media, London, U.K., 2011).
    34. 34)
      • 49. Yerudkar, A., Del-Vecchio, C., Glielmo, L.: ‘Control of switched Boolean control networks by state feedback’. 2019 18th European Control Conf. (ECC), 2019, pp. 19992004.
    35. 35)
      • 44. Nosrati, M., Karimi, R., Aziztabar, R.: ‘Minimization of Boolean functions which include don't-care statements, using graph data structure’ in ‘Advances in wireless mobile networks and applications’ (Springer, 2011), pp. 212220.
    36. 36)
      • 31. Li, X., Tian, H., Wu, B.: ‘Output synchronisation design for master–slave Boolean networks’, IET Control Theory Applic., 2018, 12, (14), pp. 19952001.
    37. 37)
      • 22. Fornasini, E., Valcher, M.E.: ‘Observability, reconstructibility and state observers of Boolean control networks’, IEEE Trans. Autom. Control, 2013, 58, (6), pp. 13901401.
    38. 38)
      • 47. El-Farra, N.H., Gani, A., Christofides, P.D.: ‘Analysis of mode transitions in biological networks’, AIChE J., 2005, 51, (8), pp. 22202234.
    39. 39)
      • 46. Davidich, M.I., Bornholdt, S.: ‘Boolean network model predicts cell cycle sequence of fission yeast’, PLOS ONE, 2008, 3, (2), p. e1672.
    40. 40)
      • 37. Zou, Y., Zhu, J., Liu, Y.: ‘State-feedback controller design for disturbance decoupling of Boolean control networks’, IET Control Theory Applic., 2017, 11, (18), pp. 32333239.
    41. 41)
      • 10. Kim, Y.J., Hwang, J.S., Hong, Y.B., et al: ‘Transforming growth factor beta receptor i inhibitor sensitizes drug-resistant pancreatic cancer cells to gemcitabine’, Anticancer Res., 2012, 32, (3), pp. 799806.
    42. 42)
      • 29. Wu, Y., Sun, X.M., Zhao, X., et al: ‘Optimal control of Boolean control networks with average cost: a policy iteration approach’, Automatica, 2019, 100, pp. 378387.
    43. 43)
      • 15. Isidori, A.: ‘Global almost disturbance decoupling with stability for non minimum-phase single-input single-output nonlinear systems’, Syst. Control Lett., 1996, 28, (2), pp. 115122.
    44. 44)
      • 28. Fornasini, E., Valcher, M.E.: ‘Optimal control of Boolean control networks’, IEEE Trans. Autom. Control, 2014, 59, (5), pp. 12581270.
    45. 45)
      • 3. Veliz-Cuba, A., Stigler, B.: ‘Boolean models can explain bistability in the lac operon’, J. Comput. Biol., 2011, 18, (6), pp. 783794.
    46. 46)
      • 43. Karnaugh, M.: ‘The map method for synthesis of combinational logic circuits’, Trans. Am. Inst. Electr. Eng. I, Commun. Electron., 1953, 72, (5), pp. 593599.
    47. 47)
      • 9. Shinar, G., Milo, R., Martínez, M.R., et al: ‘Input–output robustness in simple bacterial signaling systems’, Proc. National Acad. Sci., 2007, 104, (50), pp. 1993119935.
    48. 48)
      • 16. Zhang, L., Cheng, D., Li, C.: ‘Disturbance decoupling of switched nonlinear systems’, IEEE Proc. Control Theory Appl., 2005, 152, (1), pp. 4954.
    49. 49)
      • 11. Akutsu, T., Hayashida, M., Ching, W.K., et al: ‘Control of Boolean networks: hardness results and algorithms for tree structured networks’, J. Theor. Biol., 2007, 244, (4), pp. 670679.
    50. 50)
      • 23. Liu, H., Liu, Y., Li, Y., et al: ‘Observability of Boolean networks via STP and graph methods’, IET Control Theory Applic., 2018, 13, (7), pp. 10311037.
    51. 51)
      • 18. Cheng, D., Qi, H.: ‘A linear representation of dynamics of Boolean networks’, IEEE Trans. Autom. Control, 2010, 55, (10), pp. 22512258.
    52. 52)
      • 20. Cheng, D., Qi, H.: ‘Controllability and observability of Boolean control networks’, Automatica, 2009, 45, (7), pp. 16591667.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.1144
Loading

Related content

content/journals/10.1049/iet-cta.2019.1144
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address