access icon free Sensor attack detection for cyber-physical systems based on frequency domain partition

This study is concerned with the attack detection (AD) problems in finite frequency domain for cyber-physical systems with sensor attack. The frequency domain is divided into three frequency domains of low, medium and high, multiple AD filters are designed to work simultaneously. The attack detectionAD problem is transformed into a multi-objective optimisation schemes for each finite frequency domain. Finally, the experimental results of networked motion control system are given to verify the effectiveness and superiority of proposed method.

Inspec keywords: frequency-domain analysis; networked control systems; optimisation; filters; cyber-physical systems; motion control; sensors

Other keywords: networked motion control system; sensor AD problem; AD filter; finite frequency domain partition; cyber-physical systems; sensor attack detection problem; multiobjective optimisation schemes

Subjects: Optimisation techniques; Transducers and sensing devices; Mathematical analysis; Spatial variables control; Sensing devices and transducers; Optimisation techniques; Mathematical analysis

References

    1. 1)
      • 39. Long, Y., Yang, G.H.: ‘Fault detection in finite frequency domain for networked control systems with missing measurements’, J. Frankl. Inst., 2013, 350, (9), pp. 26052626.
    2. 2)
      • 5. Ye, D., Zhang, T.Y.: ‘Summation detector for false data-injection attack in cyber-physical systems’, IEEE Trans. Cybern., 2019, PP, https://doi.org/10.1109/TCYB.2019.2915124.
    3. 3)
      • 22. Yuan, H., Xia, Y.: ‘Resilient strategy design for cyber-physical system under dos attack over a multi-channel framework’, Inf. Sci., 2018, 454–455, pp. 312327.
    4. 4)
      • 10. Abbaspour, A., Yen, K.K., Noei, S., et al: ‘Detection of fault data injection attack on uav using adaptive neural network’, Procedia Comput. Sci., 2016, 95, pp. 193200.
    5. 5)
      • 25. Sanchez, H.S., Rotondo, D., Escobet, T., et al: ‘Detection of replay attacks in cyber-physical systems using a frequency-based signature’, J. Frankl. Inst., 2019, 356, (5), pp. 27982824.
    6. 6)
      • 49. Skelton, R., Iwasaki, T., Grigoriadis, K.: ‘A unified algebraic approach to linear control design’ (CRC Press, USA, 1997).
    7. 7)
      • 37. Li, X., Yang, G.: ‘Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults’, IEEE Trans. Cybern., 2014, 44, (8), pp. 14461458.
    8. 8)
      • 28. Li, L., Ding, S.X.: ‘Optimal detection schemes for multiplicative faults in uncertain systems with application to rolling mill processes’, IEEE Trans. Control Syst. Technol., 2019, pp. 113, https://doi.org/10.1109/TCST.2019.2947876.
    9. 9)
      • 32. Duan, Z., Ghous, I., Huang, S., et al: ‘Fault detection observer design for 2-D continuous nonlinear systems with finite frequency specifications’, ISA Trans., 2019, 84, pp. 111.
    10. 10)
      • 20. Hu, L., Wang, Z., Han, Q.L., et al: ‘State estimation under false data injection attacks: security analysis and system protection’, Automatica, 2018, 87, pp. 176183.
    11. 11)
      • 4. Ashibani, Y., Mahmoud, Q.H.: ‘Cyber physical systems security: analysis, challenges and solutions’, Comput. Secur., 2017, 68, pp. 8197.
    12. 12)
      • 29. Ding, S.X., Li, L., Kruger, M.: ‘Application of randomized algorithms to assessment and design of observer-based fault detection systems’, Automatica, 2019, 107, pp. 175182.
    13. 13)
      • 34. Chibani, A., Chadli, M., Shi, P., et al: ‘Multi-objective H/H fault detection filter design for T-S fuzzy systems with finite frequency specifications’, IFAC-PapersOnLine, 2018, 51, (24), pp. 11721178.
    14. 14)
      • 27. Teixeira, A., Shames, I., Sandberg, H., et al: ‘A secure control framework for resource-limited adversaries’, Automatica, 2015, 51, pp. 135148.
    15. 15)
      • 23. Lu, A., Yang, G.: ‘Input-to-state stabilizing control for cyber-physical systems with multiple transmission channels under denial of service’, IEEE Trans. Autom. Control., 2018, 63, (6), pp. 18131820.
    16. 16)
      • 40. Zhong, G.X., Yang, G.H.: ‘Fault detection for discrete-time switched systems with sensor stuck faults and servo inputs’, ISA Trans., 2015, 58, pp. 196205.
    17. 17)
      • 1. Ding, D., Han, Q.L., Xiang, Y., et al: ‘A survey on security control and attack detection for industrial cyber-physical systems’, Neurocomputing, 2018, 275, pp. 16741683.
    18. 18)
      • 16. Guan, Y., Ge, X.: ‘Distributed attack detection and secure estimation of networked cyber-physical systems against false data injection attacks and jamming attacks’, IEEE Trans. Signal Inf. Process. Netw., 2018, 4, (1), pp. 4859.
    19. 19)
      • 24. Chen, X., Wang, Y., Hu, S.: ‘Event-based robust stabilization of uncertain networked control systems under quantization and denial-of-service attacks’, Inf. Sci., 2018, 459, pp. 369386.
    20. 20)
      • 12. Ge, H., Yue, D., Xie, X., et al: ‘A unified modeling of muti-sources cyber-attacks with uncertainties for cps security control’, J. Frankl. Inst., 2019, https://doi.org/10.1016/j.jfranklin.2019.01.006.
    21. 21)
      • 6. Yang, H., Ye, D.: ‘Distributed fixed-time consensus tracking control of uncertain nonlinear multiagent systems: a prioritized strategy’, IEEE Trans. Cybern., 2019, PP, pp. 112.
    22. 22)
      • 19. Li, Y.G., Yang, G.H.: ‘Optimal stealthy false data injection attacks in cyber-physical systems’, Inf. Sci., 2019, 481, pp. 474490.
    23. 23)
      • 8. Zhu, J.W., Yang, G.H., Wang, H., et al: ‘Fault estimation for a class of nonlinear systems based on intermediate estimator’, IEEE Trans. Autom. Control, 2015, 61, pp. 11.
    24. 24)
      • 2. Mahmoud, M.S., Hamdan, M.M., Baroudi, U.A.: ‘Modeling and control of cyber-physical systems subject to cyber attacks: a survey of recent advances and challenges’, Neurocomputing, 2019, 338, pp. 101115.
    25. 25)
      • 15. Lu, A.Y., Yang, G.H.: ‘Distributed consensus control for multi-agent systems under denial-of-service’, Inf. Sci., 2018, 439–440, pp. 95107.
    26. 26)
      • 35. Yang, H., Xia, Y., Liu, B.: ‘Fault detection for T-S fuzzy discrete systems in finite-frequency domain’, IEEE Trans. Syst. Man Cybern. Syst., 2011, 41, (4), pp. 911920.
    27. 27)
      • 31. Chadli, M., Abdo, A., Ding, S.X.: ‘H/H fault detection filter design for discrete-time Takagi-Sugeno fuzzy system’, Automatica, 2013, 49, (7), pp. 19962005.
    28. 28)
      • 48. Frank, P.M.: ‘Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: a survey and some new results’, Automatica, 1990, 26, (3), pp. 459474.
    29. 29)
      • 44. Zhang, S., Wang, Z., Ding, D., et al: ‘On design of robust fault detection filter in finite-frequency domain with regional pole assignment’, IEEE Trans. CIRCUITS-II, 2015, 62, (4), pp. 382386.
    30. 30)
      • 7. Wang, X., Yang, G.H.: ‘Fault-tolerant consensus tracking control for linear multiagent systems under switching directed network’, IEEE Trans. Cybern., 2019, PP, pp. 110.
    31. 31)
      • 18. Ao, W., Song, Y., Wen, C., et al: ‘Finite time attack detection and supervised secure state estimation for cpss with malicious adversaries’, Inf. Sci., 2018, 451–452, pp. 6782.
    32. 32)
      • 33. Ding, D.W., Xie, X., Du, X., et al: ‘Finite-frequency model reduction of discrete-time T-S fuzzy state-delay systems’, Neurocomputing, 2016, 203, pp. 121128.
    33. 33)
      • 9. Fei, X., Shah, N., Verba, N., et al: ‘Cps data streams analytics based on machine learning for cloud and fog computing: a survey’, Futur. Gener. Comp. Syst., 2019, 90, pp. 435450.
    34. 34)
      • 46. Hu, Y., Li, H., Luan, T.H., et al: ‘Detecting stealthy attacks on industrial control systems using a permutation entropy-based method’, Future Gener. Comput. Syst., 2018, https://doi.org/10.1016/j.future.2018.07.027.
    35. 35)
      • 13. Fritz, R., Zhang, P.: ‘Modeling and detection of cyber attacks on discrete event systems’, IFAC-PapersOnLine, 2018, 51, (7), pp. 285290.
    36. 36)
      • 14. Lu, A.Y., Yang, G.H.: ‘Switched projected gradient descent algorithms for secure state estimation under sparse sensor attacks’, Automatica, 2019, 103, pp. 503514.
    37. 37)
      • 26. Zhang, W.A., Yu, L., He, D.: ‘Sequential fusion estimation for sensor networks with deceptive attacks’, IEEE Trans. Aerosp. Electron. Syst., 2019, PP, pp. 11.
    38. 38)
      • 17. Ge, X., Han, Q.L., Zhong, M., et al: ‘Distributed krein space-based attack detection over sensor networks under deception attacks’, Automatica, 2019, 109, pp. 108557.
    39. 39)
      • 36. Zhang, K., Jiang, B., Shi, P., et al: ‘Analysis and design of robust H fault estimation observer with finite-frequency specifications for discrete-time fuzzy systems’, IEEE Trans. Cybern., 2015, 45, (7), pp. 12251235.
    40. 40)
      • 43. Duan, Z., Ghous, I., Shen, J.: ‘Fault detection observer design for discrete-time 2-D T-S fuzzy systems with finite-frequency specifications’, Fuzzy Sets. Syst., 2019, https://doi.org/10.1016/i.fss.2019.05.004.
    41. 41)
      • 30. Iwasaki, T., Hara, S.: ‘Generalized kyp lemma: unified frequency domain inequalities with design applications’, IEEE Trans. Autom. Control., 2005, 50, (1), pp. 4159.
    42. 42)
      • 11. Yu, J.J.Q., Hou, Y., Li, V.O.K.: ‘Online false data injection attack detection with wavelet transform and deep neural networks’, IEEE Trans. Ind. Inform., 2018, 14, (7), pp. 32713280.
    43. 43)
      • 42. Zhu, X., Xia, Y., Fu, M.: ‘Fault estimation and active fault-tolerant control for discrete-time systems in finite-frequency domain’, ISA Trans., 2019, https://doi.org/10.1016/ j.isatra.2019.02.014.
    44. 44)
      • 47. Liu, D.L., Feng, D.Q.: ‘Deceptive attack detection of control system using multi-scale principal component analysis’, Zhejiang Daxue Xuebao (Gongxue Ban)/J. Zhejiang Univ. (Eng. Sci.), 2018, 52, (9), pp. 17381746.
    45. 45)
      • 45. Li, X., Yang, G.: ‘Fault detection for T-S fuzzy systems with unknown membership functions’, IEEE Trans. Fuzzy Syst., 2014, 22, (1), pp. 139152.
    46. 46)
      • 21. Sun, H., Peng, C., Zhang, W., et al: ‘Security-based resilient event-triggered control of networked control systems under denial of service attacks’, J. Frankl. Inst., 2019, 356, (17), pp. 1027710295.
    47. 47)
      • 38. Chibani, A., Chadli, M., Ding, S.X., et al: ‘Design of robust fuzzy fault detection filter for polynomial fuzzy systems with new finite frequency specifications’, Automatica, 2018, 93, pp. 4254.
    48. 48)
      • 50. Tuan, H.D., Apkarian, P., Nguyen, T.Q.: ‘Robust and reduced-order filtering: new lmi-based characterizations and methods’, IEEE Trans. Signal Process., 2001, 49, (12), pp. 29752984.
    49. 49)
      • 41. Jing, H., Wang, R., Karimi, H.R., et al: ‘Robust output-feedback based fault-tolerant control of active suspension with finite-frequency constraint’, IFAC-PapersOnLine, 2015, 48, (21), pp. 11731179.
    50. 50)
      • 3. Dibaji, S.M., Pirani, M., Flamholz, D.B., et al: ‘A systems and control perspective of cps security’, Annu. Rev. Control, 2019, 47, pp. 394411.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.1140
Loading

Related content

content/journals/10.1049/iet-cta.2019.1140
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading