Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Synchronisation of second-order stochastic complex dynamical networks via intermittent pinning discrete observations control and their applications

In this study, the exponential synchronisation of second-order stochastic complex dynamical networks (SOSCDNs) is considered. A novel control called periodically intermittent pinning discrete observations control is proposed, which is based on discrete-time state observations instead of continuous-time state observations during the control time. To the authors' knowledge, the above control strategy has rarely been investigated in previous researches. Compared with the existing literature, there are no restrictions on the network topology structure in this study. Furthermore, by employing the Lyapunov method, stochastic analysis techniques, and matrix theory, a synchronisation criterion and a corollary about the exponential synchronisation of the SOSCDNs are presented. In particular, when the duration between two consecutive observations tends to zero, periodically intermittent pinning discrete observations control degenerates into periodically intermittent pinning control, and relevant corollaries are also derived. Finally, they applied theoretical results to single-link robot arm systems and oscillator systems. Meanwhile, the numerical simulations are performed to demonstrate the effectiveness of their results.

References

    1. 1)
      • 39. Wu, Y., Li, H., Li, W.: ‘Intermittent control strategy for synchronization analysis of time-varying complex dynamical networks’, IEEE Trans. Syst., Man, Cybern.: Syst., 2019, pp. 112, doi: 10.1109/TSMC.2019.2920451.
    2. 2)
      • 42. Guo, B., Wu, Y., Xiao, Y., et al: ‘Graph-theoretic approach to synchronizing stochastic coupled systems with time-varying delays on networks via periodically intermittent control’, Appl. Math. Comput., 2018, 331, pp. 341357.
    3. 3)
      • 40. Wang, P., Hong, Y., Su, H.: ‘Stabilization of stochastic complex-valued coupled delayed systems with Markovian switching via periodically intermittent control’, Nonlinear Anal., Hybrid Syst., 2018, 29, pp. 395413.
    4. 4)
      • 16. Begon, M., Harper, J.L., Townsend, C.R., et al: ‘Ecology: individuals, populations and communities’ (Blackwell Scientific Publications, Oxford, UK, 1986).
    5. 5)
      • 1. Li, Z., Chen, G.: ‘Global synchronization and asymptotic stability of complex dynamical networks’, IEEE Trans. Circuits Syst. II, Express Briefs, 2006, 53, (1), pp. 2833.
    6. 6)
      • 27. Wang, X.F., Chen, G.: ‘Pinning control of scale-free dynamical networks’, Physica A, 2002, 310, (3–4), pp. 521531.
    7. 7)
      • 10. Yang, X., Cao, J., Liang, J.: ‘Exponential synchronization of memristive neural networks with delays: interval matrix method’, IEEE Trans. Neural Netw. Learning Syst., 2016, 28, (8), pp. 18781888.
    8. 8)
      • 38. Song, G., Zheng, B.-C., Luo, Q., et al: ‘Stabilisation of hybrid stochastic differential equations by feedback control based on discrete-time observations of state and mode’, IET Control Theory Applic., 2016, 11, (3), pp. 301307.
    9. 9)
      • 17. Sheng, S., Zhang, X., Lu, G.: ‘Finite-time outer-synchronization for complex networks with Markov jump topology via hybrid control and its application to image encryption’, J. Franklin Inst., 2018, 355, (14), pp. 64936519.
    10. 10)
      • 29. Song, Q., Cao, J., Yu, W.: ‘Second-order leader-following consensus of nonlinear multi-agent systems via pinning control’, Syst. Control Lett., 2010, 59, (9), pp. 553562.
    11. 11)
      • 23. Deissenberg, C.: ‘Optimal control of linear econometric models with intermittent controls’, Econ. Plan., 1980, 16, (1), pp. 4956.
    12. 12)
      • 44. Ni, J., Liu, L., Liu, C., et al: ‘Fixed-time leader-following consensus for second-order multiagent systems with input delay’, IEEE Trans. Ind. Electron., 2017, 64, (11), pp. 86358646.
    13. 13)
      • 9. Zhao, Y., Zhang, W., Su, H., et al: ‘Observer-based synchronization of chaotic systems satisfying incremental quadratic constraints and its application in secure communication’, IEEE Trans. Syst., Man, Cybern., Syst., 2018, 50, pp. 52215232, doi: 10.1109/TSMC.2018.2868482.
    14. 14)
      • 8. Qian, Y., Zhang, W., Ji, M., et al: ‘Observer-based positive edge consensus for directed nodal networks’, IET Control Theory Applic., 2019, 14, (2), pp. 352357.
    15. 15)
      • 20. Xu, Y., Shen, R., Li, W.: ‘Finite-time synchronization for coupled systems with time delay and stochastic disturbance under feedback control’, J. Appl. Anal. Comput., 2020, 10, (1), pp. 124.
    16. 16)
      • 34. Mao, X., Liu, W., Hu, L., et al: ‘Stabilization of hybrid stochastic differential equations by feedback control based on discrete-time state observations’, Syst. Control Lett., 2014, 73, pp. 8895.
    17. 17)
      • 26. Gan, Q., Lv, T., Fu, Z.: ‘Synchronization criteria for generalized reaction–diffusion neural networks via periodically intermittent control’, Chaos, 2016, 26, (4), p. 043113.
    18. 18)
      • 36. Qiu, Q., Liu, W., Hu, L., et al: ‘Stabilization of stochastic differential equations with Markovian switching by feedback control based on discrete-time state observation with a time delay’, Stat. Probab. Lett., 2016, 115, pp. 1626.
    19. 19)
      • 50. Sun, W., Yu, X., Lü, J., et al: ‘Synchronization of coupled harmonic oscillators with random noises’, Nonlinear Dyn., 2015, 79, (1), pp. 473484.
    20. 20)
      • 49. Mao, X.: ‘Stochastic differential equations and applications’ (Horwood Publishing, Chichester, 2007).
    21. 21)
      • 22. Wang, X., Liu, X., She, K., et al: ‘Delay-dependent impulsive distributed synchronization of stochastic complex dynamical networks with time-varying delays’, IEEE Trans. Syst., Man, Cybern., Syst., 2018, 49, (7), pp. 14961504.
    22. 22)
      • 13. Du, H., He, Y., Cheng, Y.: ‘Finite-time synchronization of a class of second-order nonlinear multi-agent systems using output feedback control’, IEEE Trans. Circuits Syst. I, Regular Papers, 2014, 61, (6), pp. 17781788.
    23. 23)
      • 46. Huang, N., Duan, Z., Zhao, Y.: ‘Leader-following consensus of second-order non-linear multi-agent systems with directed intermittent communication’, IET Control Theory Applic., 2014, 8, (10), pp. 782795.
    24. 24)
      • 2. Yang, X., Lam, J., Ho, D.W., et al: ‘Fixed-time synchronization of complex networks with impulsive effects via nonchattering control’, IEEE Trans. Autom. Control, 2017, 62, (11), pp. 55115521.
    25. 25)
      • 14. Dai, H., Chen, W., Xie, J., et al: ‘Exponential synchronization for second-order nonlinear systems in complex dynamical networks with time-varying inner coupling via distributed event-triggered transmission strategy’, Nonlinear Dyn., 2018, 92, (3), pp. 853867.
    26. 26)
      • 21. Li, X.-J., Yang, G.-H.: ‘Graph theory-based pinning synchronization of stochastic complex dynamical networks’, IEEE Trans. Neural Netw. Learning Syst., 2016, 28, (2), pp. 427437.
    27. 27)
      • 43. Cheng, J., Wang, B., Park, J.H., et al: ‘Sampled-data reliable control for T–S fuzzy semi-Markovian jump system and its application to single-link robot arm model’, IET Control Theory Applic., 2017, 11, (12), pp. 19041912.
    28. 28)
      • 19. Cai, S., Lei, X., Liu, Z.: ‘Outer synchronization between two hybrid-coupled delayed dynamical networks via aperiodically adaptive intermittent pinning control’, Complexity, 2016, 21, (S2), pp. 593605.
    29. 29)
      • 18. Wu, Z., Chen, G., Fu, X.: ‘Outer synchronization of drive-response dynamical networks via adaptive impulsive pinning control’, J. Franklin Inst., 2015, 352, (10), pp. 42974308.
    30. 30)
      • 28. Wang, J., Wu, H., Huang, T., et al: ‘Pinning control strategies for synchronization of linearly coupled neural networks with reaction–diffusion terms’, IEEE Trans. Neural Netw. Learning Syst., 2015, 27, (4), pp. 749761.
    31. 31)
      • 24. Xia, W., Cao, J.: ‘Pinning synchronization of delayed dynamical networks via periodically intermittent control’, Chaos, 2009, 19, (1), p. 013120.
    32. 32)
      • 32. Wang, Y., Lu, J., Liang, J., et al: ‘Pinning synchronization of nonlinear coupled lur networks under hybrid impulses’, IEEE Trans. Circuits Syst. II, Express Briefs, 2018, 66, (3), pp. 432436.
    33. 33)
      • 45. Zhang, H., Lewis, F.L., Qu, Z.: ‘Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs’, IEEE Trans. Ind. Electron., 2011, 59, (7), pp. 30263041.
    34. 34)
      • 15. Wang, J., Zhang, J., Yuan, Z., et al: ‘Neurotransmitter-mediated collective rhythms in grouped drosophila circadian clocks’, J. Biol. Rhythms, 2008, 23, (6), pp. 472482.
    35. 35)
      • 31. Wang, J.-L., Wei, P.-C., Wu, H.-N., et al: ‘Pinning synchronization of complex dynamical networks with multiweights’, IEEE Trans. Syst. Man Cybern., Syst., 2017, 49, pp. 13571370.
    36. 36)
      • 6. Feng, J., Yu, F., Zhao, Y.: ‘Exponential synchronization of nonlinearly coupled complex networks with hybrid time-varying delays via impulsive control’, Nonlinear Dyn., 2016, 85, (1), pp. 621632.
    37. 37)
      • 51. Liu, Y., Li, W., Feng, J.: ‘The stability of stochastic coupled systems with time-varying coupling and general topology structure’, IEEE Trans. Neural Netw. Learning Syst., 2018, 29, (9), pp. 41894200.
    38. 38)
      • 41. Li, S., Yao, X., Li, W.: ‘Almost sure exponential stabilization of hybrid stochastic coupled systems via intermittent noises: a higher-order nonlinear growth condition’, J. Math. Anal. Appl., 2020, 489, (1), p. 124150.
    39. 39)
      • 35. Ren, Y., Yin, W., Sakthivel, R.: ‘Stabilization of stochastic differential equations driven by G-brownian motion with feedback control based on discrete-time state observation’, Automatica, 2018, 95, pp. 146151.
    40. 40)
      • 11. Liu, B., Li, S., Tang, X.: ‘Adaptive second-order synchronization of two heterogeneous nonlinear coupled networks’, Math. Probl. Eng., 2015, 2015, pp. 17.
    41. 41)
      • 5. Gao, H., Lam, J., Chen, G.: ‘New criteria for synchronization stability of general complex dynamical networks with coupling delays’, Phys. Lett. A, 2006, 360, (2), pp. 263273.
    42. 42)
      • 7. Zhou, H., Li, Y., Li, W.: ‘Synchronization for stochastic hybrid coupled controlled systems with Lévy noise’, Math. Methods Appl. Sci., 2020, 43, (17), pp. 95579581.
    43. 43)
      • 33. Mao, X.: ‘Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control’, Automatica, 2013, 49, (12), pp. 36773681.
    44. 44)
      • 25. Hu, C., Yu, J., Jiang, H., et al: ‘Exponential lag synchronization for neural networks with mixed delays via periodically intermittent control’, Chaos, 2010, 20, (2), p. 023108.
    45. 45)
      • 48. Huang, L.: ‘Linear algebra in system and control theory’ (SciencePress, Beijing, People's Republic of China, 1984).
    46. 46)
      • 12. Yu, W., Chen, G., Cao, M., et al: ‘Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics’, IEEE Trans. Syst., Man, Cybern. B, Cybern., 2009, 40, (3), pp. 881891.
    47. 47)
      • 4. Chen, X., Huang, T., Cao, J., et al: ‘Finite-time multi-switching sliding mode synchronisation for multiple uncertain complex chaotic systems with network transmission mode’, IET Control Theory Applic., 2019, 13, (9), pp. 12461257.
    48. 48)
      • 37. You, S., Liu, W., Lu, J., et al: ‘Stabilization of hybrid systems by feedback control based on discrete-time state observations’, SIAM J. Control Optim., 2015, 53, (2), pp. 905925.
    49. 49)
      • 3. Liu, J., Zhang, Y., Yu, Y., et al: ‘Fixed-time leader–follower consensus of networked nonlinear systems via event/self-triggered control’, IEEE Trans. Neural Netw. Learning Syst., 2020, 31, (11), pp. 50295037.
    50. 50)
      • 47. Li, Y., Lu, J., Mao, X., et al: ‘Stabilization of hybrid systems by feedback control based on discrete-time state and mode observations’, Asian J. Control, 2017, 19, (6), pp. 19431953.
    51. 51)
      • 30. Yu, W., Chen, G., Lu, J., et al: ‘Synchronization via pinning control on general complex networks’, SIAM J. Control Optim., 2013, 51, (2), pp. 13951416.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.1132
Loading

Related content

content/journals/10.1049/iet-cta.2019.1132
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address