access icon free Hybrid extended-cubature Kalman filters for non-linear continuous-time fractional-order systems involving uncorrelated and correlated noises using fractional-order average derivative

In this study, hybrid extended-cubature Kalman filters (HECKFs) for non-linear continuous-time fractional-order systems with uncorrelated and correlated noises are investigated. A non-linear continuous-time fractional-order system using the fractional-order average derivative is discretised to gain a difference equation. The fractional-order average derivative method can achieve more accurate state estimation compared with the Grünwald–Letnikov difference method and the non-linear functions in the system description are dealt with the extended Kalman filter (EKF) and cubature Kalman filter (CKF). The first-order Taylor expansion used in the EKF method is implemented for a non-linear function at the current time. Meanwhile, by using the third-degree spherical-radical rule, the functions in the state equation and output equation are performed by the cubature points. Based on these cubature points, the CKFs for uncorrelated and correlated noises are presented to achieve the effective state estimation. Besides, the simulation results are offered to validate the effectiveness of the HECKF proposed in this study.

Inspec keywords: state estimation; Kalman filters; nonlinear control systems; difference equations; continuous time systems; nonlinear filters

Other keywords: cubature points; Grunwald–Letnikov difference method; HECKFs; difference equation; EKF method; nonlinear function; uncorrelated-correlated noises; nonlinear continuous-time fractional-order systems; third-degree spherical-radical rule; state estimation; first-order Taylor expansion; fractional-order average derivative method; hybrid extended-cubature Kalman filters

Subjects: Differential equations (numerical analysis); Signal processing theory; Simulation, modelling and identification; Differential equations (numerical analysis); Nonlinear control systems; Filtering methods in signal processing

References

    1. 1)
      • 9. Cao, H.F., Zhang, R.X., Yan, F.: ‘Spread spectrum communication and its circuit implementation using fractional-order chaotic system via a single driving variable’, Commun. Nonlinear Sci. Numer. Simul., 2013, 18, (2), pp. 341350.
    2. 2)
      • 4. Cai, W., Chen, W.: ‘Fractional derivative modelling of frequency-dependent dissipative mechanism forwave propagation in complex media’, Chin. J. Theor. Appl. Mech., 2016, 48, (6), pp. 12651280.
    3. 3)
      • 6. Martynyuk, V., Ortigueira, M.: ‘Fractional model of an electrochemical capacitor’, Signal Process., 2015, 107, pp. 355360.
    4. 4)
      • 31. Julier, S.J., Uhlmann, J.K.: ‘Unscented filtering and nonlinear estimation’, Proc. IEEE, 2004, 92, (3), pp. 401422.
    5. 5)
      • 23. Pichlík, P., Zdĕnek, J.: ‘Dependence of locomotive adhesion force estimation by a Kalman filter on the filter settings’, Procedia Eng., 2017, 192, pp. 695700.
    6. 6)
      • 30. Chow, S.M., Ferrer, E., Nesselroade, J.R.: ‘An unscented Kalman filter approach to the estimation of nonlinear dynamical systems models’, Multivariate Behav. Res., 2007, 42, (2), pp. 283321.
    7. 7)
      • 20. Petersen, C.D., Fraanje, R., Cazzolato, B.S., et al: ‘A Kalman filter approach to virtual sensing for active noise control’, Mech. Syst. Signal Process., 2008, 22, (2), pp. 490508.
    8. 8)
      • 3. Abbas, I.A.: ‘Fractional order GN model on thermoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole’, J. Comput. Theor. Nanosci., 2014, 11, (2), pp. 380384.
    9. 9)
      • 36. Najar, S., Abdelkrim, M.N.: ‘Discrete fractional Kalman filter’, IFAC Proc. Vol., 2009, 42, (19), pp. 520525.
    10. 10)
      • 14. Lan, Y.H., Huang, H.X., Zhou, Y.: ‘Observer-based robust control of a (1a<2) fractional-order uncertain systems: a linear matrix inequality approach’, IET Control Theory Applic., 2012, 6, (2), pp. 229234.
    11. 11)
      • 21. Wirtensohn, S., Schuster, M., Reuter, J.: ‘Disturbance estimation and wave filtering using an unscented Kalman filter’, IFAC-PapersOnLine, 2016, 49, (23), pp. 518523.
    12. 12)
      • 29. Montenbruck, O., Gill, E.: ‘Satellite orbits-models, methods and applications’, Appl. Mech. Rev., 2002, 55, (2), pp. B27B28.
    13. 13)
      • 39. Caputo, M.C., Torres, D.F.M.: ‘Duality for the left and right fractional derivatives’, Signal Process., 2015, 107, pp. 265271.
    14. 14)
      • 27. Sun, Y.H., Wu, X.P., Cao, J.D., et al: ‘Fractional extended Kalman filtering for non-linear fractional system with Lévy noises’, IET Control Theory Applic., 2017, 11, (3), pp. 349358.
    15. 15)
      • 28. Liu, T.Y., Cheng, S.S., Wei, Y.H., et al: ‘Fractional central difference Kalman filter with unknown prior information’, Signal Process., 2019, 154, pp. 294303.
    16. 16)
      • 37. Gao, Z.: ‘Reduced order Kalman filter for a continuous-time fractional-order system using fractional-order average derivative’, Appl. Math. Comput., 2018, 338, pp. 7286.
    17. 17)
      • 10. Gholizadeh, M., Salmasi, F.R.: ‘Estimation of state of charge, unknown nonlinearities, and state of health of a lithium-ion battery based on a comprehensive unobservable model’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 13351344.
    18. 18)
      • 32. Cavenago, F., Di Lizia, P., Massari, M., et al: ‘On-board spacecraft relative pose estimation with high-order extended Kalman filter’, Acta Astronaut., 2019, 158, pp. 5567.
    19. 19)
      • 33. Miao, Z.Y., Shi, H.Y., Zhang, Y., et al: ‘Neural network-aided variational Bayesian adaptive cubature Kalman filtering for nonlinear state estimation’, Meas. Sci. Technol., 2017, 28, (10), ID: 105003.
    20. 20)
      • 13. Gammoudi, I.E., Feki, M.: ‘Synchronization of integer order and fractional order Chua's systems using robust observer’, Commun. Nonlinear Sci. Numer. Simul., 2013, 18, (3), pp. 625638.
    21. 21)
      • 19. Komeil, N., Masoud, S.: ‘Kalman filtering for discrete-time linear fractional-order singular systems’, IET Control Theory Applic., 2018, 12, (9), pp. 12541266.
    22. 22)
      • 26. Wu, X.P., Sun, Y.H., Lu, Z.G., et al: ‘A modified Kalman filter algorithm for fractional system under Lévy noises’, J. Franklin Inst., 2015, 352, (5), pp. 19631978.
    23. 23)
      • 24. Zhou, X.H., Yang, J., Li, Z., et al: ‘Stability analysis based on partition trajectory approach for switched neural networks with fractional Brown noise disturbance’, Int. J. Control, 2017, 10, (90), pp. 21652177.
    24. 24)
      • 18. Zhong, F., Li, H., Zhong, S.: ‘State estimation based on fractional order sliding mode observer method for a class of uncertain fractional-order nonlinear systems’, Signal Process., 2016, 127, pp. 168184.
    25. 25)
      • 11. Shulin, L., Naxin, C., Yan, L., et al: ‘Modeling and state of charge estimation of lithium-ion battery based on theory of fractional order for electric vehicle’, Trans. China Electrotech. Soc., 2017, 34, (4), pp. 189195.
    26. 26)
      • 16. Gao, Z.: ‘Cubature Kalman filters for nonlinear continuous-time fractional-order systems with uncorrelated and correlated noises’, Nonlinear Dyn., 2019, 96, (3), pp. 18051817.
    27. 27)
      • 5. Atangana, A., Baleanu, D.: ‘New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model’, Thermal Sci., 2016, 20, (2), pp. 763769.
    28. 28)
      • 2. Tudor, C.A.: ‘Recent developments on stochastic heat equation with additive fractional-colored noise’, Fract. Calc. Appl. Anal., 2014, 17, (1), pp. 224246.
    29. 29)
      • 12. Lan, Y.H., Zhou, Y.: ‘Non-fragile observer-based robust control for a class of fractional-order nonlinear systems’, Syst. Control Lett., 2013, 62, (12), pp. 11431150.
    30. 30)
      • 22. Duan, J., Shi, H., Liu, D., et al: ‘Square root cubature Kalman filter-Kalman filter algorithm for intelligent vehicle position estimate’, Procedia Eng., 2016, 137, pp. 267276.
    31. 31)
      • 8. Luo, Y., Chen, Y.Q.: ‘Fractional order [proportional derivative] controller for a class of fractional order systems’, Automatica, 2009, 45, (10), pp. 24462450.
    32. 32)
      • 17. Sierociuk, D., Dzielinski, A.: ‘Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation’, Int. J. Appl. Math. Comput. Sci., 2006, 1, (16), pp. 129140.
    33. 33)
      • 15. Liu, T.Y., Wei, Y.H., Yin, W.D., et al: ‘State estimation for nonlinear discrete-time fractional systems a Bayesian perspective’, Signal Process., 2019, 165, pp. 250261.
    34. 34)
      • 1. Shen, J., Cao, J.: ‘Necessary and sufficient conditions for consensus of delayed fractional-order systems’, Asian J. Control, 2012, 14, (6), pp. 16901697.
    35. 35)
      • 38. Prodlubny, I.: ‘Fractional differential equation’ (Academic Press, New York, 1999).
    36. 36)
      • 40. Arasaratnam, I., Haykin, S.: ‘Cubature Kalman filters’, IEEE Trans. Autom. Control, 2009, 54, (6), pp. 12541269.
    37. 37)
    38. 38)
      • 25. Zhou, W.N., Zhou, X.H., Yang, J., et al: ‘Stability analysis and application for delayed neural networks driven by fractional Brownian noise’, IEEE Trans. Neural Netw. Learn. Syst., 2018, 29, (5), pp. 14911502.
    39. 39)
      • 7. Yang, L.X., He, W.S., Liu, X.J.: ‘Synchronization between a fractional-order system and an integer order system’, Comput. Math. Appl., 2011, 62, (12), pp. 47084716.
    40. 40)
      • 34. Zhang, L., Li, S., Zhang, E., et al: ‘Robust measure of non-linearity-based cubature Kalman filter’, IET Sci. Meas. Technol., 2017, 11, (7), pp. 929938.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.1121
Loading

Related content

content/journals/10.1049/iet-cta.2019.1121
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading