Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design of smooth hybrid controllers for a class of non-linear systems

Symbolic planning techniques rely on abstract information about a continuous system to design a discrete planner to satisfy desired high-level objectives. However, applying the generated discrete commands of the discrete planner to the original system may face several challenges, including real-time implementation, preserving the properties of high-level objectives in the continuous domain, and issues such as discontinuity in control signals that may physically harm the system. To address these issues and challenges, the authors proposed a novel hybrid control structure for systems with non-linear multi-affine dynamics over rectangular partitions. In the proposed framework, a discrete planner can be separately designed to achieve high-level specifications. Then, the proposed hybrid controller generates jumpless continuous control signals to drive the system over the partitioned space executing the discrete commands of the planner. The hybrid controller generates continuous signals in real-time while respecting the dynamics of the system and preserving the desired objectives of the high-level plan. The design process is described in detail and the existence and uniqueness of the proposed solution are investigated. Finally, several case studies are provided to verify the effectiveness of the developed technique.

References

    1. 1)
      • 11. Girard, A., Pappas, G.J.: ‘Approximation metrics for discrete and continuous systems’, Trans. Autom. Control, 2007, 52, pp. 782798.
    2. 2)
      • 32. Shamgah, L., Tadewos, T., Karimoddini, A., et al: ‘A symbolic approach for multi-target dynamic reach-avoid problem’. 14th Int. Conf. on Control and Automation (ICCA), USA, 2018, pp. 10221027.
    3. 3)
      • 27. Jiang, W., Dong, C., Wang, Q.: ‘Smooth switching linear parameter-varying control for hypersonic vehicles via a parameter set automatic partition method’, IET Control Theory Applic., 2015, 9, (16), pp. 23772386.
    4. 4)
      • 4. Summers, S., Lygeros, J.: ‘Verification of discrete time stochastic hybrid systems: a stochastic reach-avoid decision problem’, Automatica, 2010, 46, pp. 19511961.
    5. 5)
      • 31. Karimoddini, A., Lin, H., Chen, B.M., et al: ‘A smooth hybrid symbolic control for the formation of uavs over a partitioned space’. American Control Conf. (ACC), USA, 2013, pp. 982987.
    6. 6)
      • 34. Belta, C., Habets, L., Kumar, V.: ‘Control of multi-affine systems on rectangles with applications to hybrid biomolecular networks’. 41st Conf. on Decision and Control (CDC), USA, 2002, vol. 1, pp. 534539.
    7. 7)
      • 25. Zamani, M., Pola, G., Mazo, M., et al: ‘Symbolic models for nonlinear control systems without stability assumptions’, Trans. Autom. Control, 2012, 57, pp. 18041809.
    8. 8)
      • 19. Karimoddini, A., Lin, H., Chen, B.M., et al: ‘Hybrid three-dimensional formation control for unmanned helicopters’, Automatica, 2013, 49, pp. 424433.
    9. 9)
      • 26. Ali-Karimoddini, B.M.C., Lin, H., Lee, T.H.: ‘Hierarchical hybrid modelling and control of an unmanned helicopter’, Int. J. Control, 2014, 87, (9), pp. 17791793.
    10. 10)
      • 3. Ravi, V.R., Thyagarajan, T.: ‘Application of hybrid modeling and control technique to a non linear hybrid system’. Int. Conf. on Green Computing, Communication and Conservation of Energy (ICGCE), India, 2013, pp. 660666.
    11. 11)
      • 23. Abate, A., Tiwari, A., Sastry, S.: ‘Box invariance in biologically-inspired dynamical systems’, Automatica, 2009, 45, pp. 16011610.
    12. 12)
      • 13. Karimoddini, A., Lin, H.: ‘Hierarchical hybrid symbolic robot motion planning and control’, Asian J. Control, 2015, 17, pp. 2333.
    13. 13)
      • 6. Pappas, G.J.: ‘Bisimilar linear systems’, Automatica, 2003, 39, pp. 20352047.
    14. 14)
      • 14. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: ‘Temporal-logic-based reactive mission and motion planning’, Trans. Robot., 2009, 25, pp. 13701381.
    15. 15)
      • 17. Leahy, K., Zhou, D., Vasile, C.I., et al: ‘Persistent surveillance for unmanned aerial vehicles subject to charging and temporal logic constraints’, Autonom. Robots, 2016, 40, pp. 13631378.
    16. 16)
      • 5. Park, D.: ‘Concurrency and automata on infinite sequences’, in Deussen, P. (Eds.): ‘Theoretical computer science’ (Springer, Berlin, Germany, 1981), pp. 167183.
    17. 17)
      • 33. Svoreňová, M., Chmelík, M., Leahy, K., et al: ‘Temporal logic motion planning using pomdps with parity objectives: case study paper’. Proc. of the 18th Int. Conf. on Hybrid Systems: Computation and Control, USA, 2015, pp. 233238.
    18. 18)
      • 29. Park, J.J., Kuipers, B.: ‘A smooth control law for graceful motion of differential wheeled mobile robots in 2d environment’. Int. Conf. on Robotics and Automation (ICRA), People's Republic of China, 2011, pp. 48964902.
    19. 19)
      • 2. Kamgarpour, M., Ding, J., Summers, S., et al: ‘Discrete time stochastic hybrid dynamical games: verification & controller synthesis’. 50th Conf. on Decision and Control and European Control Conf. (CDC-ECC), USA, 2011, pp. 61226127.
    20. 20)
      • 30. Shtessel, Y.B., Shkolnikov, I.A., Levant, A.: ‘Smooth second-order sliding modes: missile guidance application’, Automatica, 2007, 43, pp. 14701476.
    21. 21)
      • 20. Liu, T., Zhao, X., Quigley, K., et al: ‘Verifying spatiotemporal systems via robustness bounds: an application to unmanned underwater vehicles’. Verification and Validation, 41174), USA, 2019, p. V001T14A001.
    22. 22)
      • 8. Koutsoukos, X.D., Antsaklis, P.J., Stiver, J.A., et al: ‘Supervisory control of hybrid systems’, Proc. IEEE, 2000, 88, pp. 10261049.
    23. 23)
      • 1. Antsaklis, P.J., Stiver, J.A., Lemmon, M.: ‘Hybrid system modeling and autonomous control systems’, in Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.): ‘Hybrid systems’ (Springer, Berlin, Heidelberg, 1993), pp. 366392.
    24. 24)
      • 22. Belta, C., Habets, L.: ‘Constructing decidable hybrid systems with velocity bounds’. 43rd Conf. on Decision and Control (CDC), Bahamas, 2004, vol. 1, pp. 467472.
    25. 25)
      • 15. Andersson, S., Nikou, A., Dimarogonas, D.V.: ‘Control synthesis for multi-agent systems under metric interval temporal logic specifications’, IFAC-PapersOnLine, 2017, 50, pp. 23972402.
    26. 26)
      • 21. Belta, C.: ‘On controlling aircraft and underwater vehicles’. Int. Conf. on Robotics and Automation, USA, 2004, vol. 5, pp. 49054910.
    27. 27)
      • 7. Haghverdi, E., Tabuada, P., Pappas, G.: ‘Bisimulation relations for dynamical and control systems’, Electron. Notes Theoret. Comput. Sci., 2003, 69, pp. 120136.
    28. 28)
      • 10. Alur, R., Henzinger, T.A., Lafferriere, G., et al: ‘Discrete abstractions of hybrid systems’, Proc. IEEE, 2000, 88, pp. 971984.
    29. 29)
      • 12. Shamgah, L., Karimoddini, A., Homaifar, A.: ‘A symbolic motion planning approach for the reach-avoid problem’. Int. Conf. on Systems Man, and Cybernetics (SMC), Budapest, 2016, pp. 39553960.
    30. 30)
      • 9. Belta, C., Habets, L.C.: ‘Controlling a class of nonlinear systems on rectangles’, Trans. Autom. Control, 2006, 51, pp. 17491759.
    31. 31)
      • 18. Leahy, K., Zhou, D., Vasile, C.I., et al: ‘Provably correct persistent surveillance for unmanned aerial vehicles subject to charging constraints’, in Hsieh, M., Khatib, O., Kumar, V. (Eds.): ‘Experimental Robotics’ (Springer, Cham, Switzerland, 2016), pp. 605619.
    32. 32)
      • 24. Pola, G., Girard, A., Tabuada, P.: ‘Approximately bisimilar symbolic models for nonlinear control systems’, Automatica, 2008, 44, pp. 25082516.
    33. 33)
      • 28. Ranjan, A., Jetley, P.: ‘Evaluation of signal smoothing algorithms for stability of a quadrotor mav’. Int. Conf. on Autonomous Robot Systems and Competitions (ICARSC), Portugal, 2014, pp. 309314.
    34. 34)
      • 16. Cristofaro, A., Sassano, M.: ‘Disturbance decoupling and design of unknown input observers for hybrid systems with state-driven jumps’, Nonlinear Anal., Hybrid Syst., 2020, 35, p. 100820.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.1112
Loading

Related content

content/journals/10.1049/iet-cta.2019.1112
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address