access icon free Stabilisation of networked control systems with remote and local controllers subject to delay and packet dropout

This study considers the stabilisation problem for networked control systems (NCSs) with remote and local controllers involving delay and packet dropout. In this NCSs model, the local controller receives the precise state and sends it to the remote controller via an unreliable communication channel where packet dropout may occur. When the remote controller obtains the observation, it delivers an acknowledgement to the local controller whether the precise state is received or not. Then the two controllers make their decisions simultaneously, which shall be sent to the plant through a delayed communication channel. The authors give the necessary and sufficient condition of the stabilisation in the mean-square sense for the system without the additive noise based on two coupled algebraic Riccati equations. For the system with the additive noise, firstly, they show the stability of the optimal estimator. Then the sufficient condition of the boundedness in the mean-square sense is presented. Numerical examples are illustrated to show the effectiveness of the proposed algorithm.

Inspec keywords: control system synthesis; stability; delays; telecontrol; networked control systems; Riccati equations

Other keywords: delayed communication channel; networked control systems; precise state; remote controller; unreliable communication channel; delay packet dropout; remote controllers; local controllers; local controller; stabilisation problem

Subjects: Control system analysis and synthesis methods; Stability in control theory; Distributed parameter control systems; Algebra; Optimal control

References

    1. 1)
      • 18. Bouhtouri, A., Hinrichsen, D., Pritchard, A.: ‘H type control for discrete-time stochastic systems’, Int. J. Robust. Nonlin. Control, 1999, 9, (13), pp. 923948.
    2. 2)
      • 11. Duan, K., Cai, Y., He, X., et al: ‘On finite-level dynamic quantisation of event-triggered networked systems with actuator fault’, IET Control Theory Appl., 2017, 11, (16), pp. 29272937.
    3. 3)
      • 5. Hadidi, M.T., Schwartz, C.S.: ‘Linear recursive state estimators under uncertain observations’, IEEE Trans. Autom. Control, 1979, 24, (6), pp. 944948.
    4. 4)
      • 2. Soudbakhsh, D., Phan, L., Annaswamy, A., et al: ‘Co-design of arbitrated network control systems with overrun strategies’, IEEE Trans. Control Netw. Syst., 2018, 5, (1), pp. 128141.
    5. 5)
      • 1. Zhang, W., Branicky, M.S., Phillips, S.M.: ‘Stability of networked control systems’, IEEE Control Syst. Mag., 2001, 21, (1), pp. 8499.
    6. 6)
      • 15. Li, Y., Shi, D., Chen, T.: ‘False data injection attacks on networked control systems: a Stackelberg game analysis’, IEEE Trans. Autom. Control, 2018, 63, (10), pp. 35033509.
    7. 7)
      • 4. Nahi, N.E.: ‘Optimal recursive estimation with uncertain observation’, IEEE Trans. Inf. Theory, 1969, 15, (4), pp. 457462.
    8. 8)
    9. 9)
      • 17. Kucera, V.: ‘A contribution to matrix quadratic equations’, IEEE Trans. Autom. Control, 1972, 17, (3), pp. 344347.
    10. 10)
      • 12. Garcia, E., Cao, Y., Casbeer, D.: ‘Decentralised event-triggered consensus of double integrator multi-agent systems with packet losses and communication delays’, IET Control Theory Appl., 2016, 10, (15), pp. 18351843.
    11. 11)
      • 19. Asghari, S.M., Ouyang, Y., Nayyar, A.: ‘Optimal local and remote controllers with unreliable uplink channels’, IEEE Trans. Autom. Control, 2019, 64, (5), pp. 18161831.
    12. 12)
      • 10. Tan, C., Li, L., Zhang, H.: ‘Stabilization of networked control systems with network-induced delay and packet dropout’, Automatica, 2015, 59, pp. 194199.
    13. 13)
      • 20. Ouyang, Y., Asghari, S.M., Nayyar, A.: ‘Optimal local and remote controllers with unreliable communication: the infinite horizon case’. IEEE American Control Conf. (ACC), Milwaukee, WI, USA, 2018, pp. 66346639.
    14. 14)
      • 8. Wu, W.: ‘Fault-tolerant control of uncertain non-linear networked control systems with time-varying delay, packet dropout and packet disordering’, IET Control Theory Appl., 2017, 11, (7), pp. 973984.
    15. 15)
      • 9. Liang, X., Xu, J., Zhang, H.: ‘Optimal control and stabilization for networked control systems with packet dropout and input delay’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2017, 64, (9), pp. 10871091.
    16. 16)
      • 14. Salehisadaghiani, F., Pavel, L.: ‘Distributed nash equilibrium seeking: a gossip-based algorithm’, Automatica, 2016, 72, pp. 209216.
    17. 17)
      • 6. Sinopoli, B., Schenato, L., Franceschetti, M., et al: ‘Kalman filtering with intermittent observations’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 14531464.
    18. 18)
      • 21. Shim, H., Kim, J., Sastry, S.: ‘Hierarchical control system synthesis for rotorcraft-based unmanned aerial vehicles’. Proc. AIAA Conf. Guidance Navigation Control, Denver, USA, 2000, pp. 439447.
    19. 19)
      • 13. Liang, X., Xu, J.: ‘Control for networked control systems with remote and local controllers over unreliable communication channel’, Automatica, 2018, 98, pp. 8694.
    20. 20)
      • 7. Qi, Q., Zhang, H.: ‘Output feedback control and stabilization for networked control systems with packet losses’, IEEE Trans. Cybern., 2017, 47, (8), pp. 22232234.
    21. 21)
      • 3. Schenato, L.: ‘Optimal estimation in networked control systems subject to random delay and packet drop’, IEEE Trans. Autom. Control, 2008, 53, (5), pp. 13111317.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.1104
Loading

Related content

content/journals/10.1049/iet-cta.2019.1104
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading