Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Nie–Tan fuzzy method of fault-tolerant wind energy conversion systems via sampled-data control

In this study, the stabilisation of fault-tolerant control problem for the variable speed wind turbine (VSWT) model has been investigated with actuator faults by incorporating a Takagi–Sugeno fuzzy technique. To deal with the non-linear behaviour of VSWT, Nie–Tan fuzzy logic membership is proposed. The sampled-data input is changed over into a time-delay term by input delay methodology, and the time delay caused by signal transmission is likewise overseen here. Based on Lyapunov–Krasovskii function theory, a new relaxed sufficient condition with less linear matrix inequality constraints is derived. According to this criterion, a Nie–Tan fuzzy logic controller has been devised to ensure that the closed-loop system is asymptotically stable. Finally, based on the parameter values, the numerical simulations are performed to validate the derived theoretical results.

References

    1. 1)
      • 34. Boukhezzar, B., Siguerdidjane, H.: ‘Comparison between linear and nonlinear control strategies for variable speed wind turbines’, Control Eng. Pract., 2010, 18, (12), pp. 13571368.
    2. 2)
      • 9. Shibata, A., Ohishi, S., Yabuno, H.: ‘Passive method for controlling the nonlinear characteristics in a parametrically excited hinged-hinged beam by the addition of a linear spring’, J. Sound Vib., 2015, 350, pp. 111122.
    3. 3)
      • 14. Asl, H.J., Yoon, J.: ‘Power capture optimization of variable-speed wind turbines using an output feedback controller’, Renew. Energy, 2016, 86, pp. 517525.
    4. 4)
      • 38. Yan-xia, S., Qing-nan, H., Ting-long, P., et al: ‘T-S fuzzy robust fault-tolerant control strategy for wind energy conversion system’. Industrial Electronics and Applications (ICIEA) 2013 8th IEEE Conf. on., Melbourne, VIC, Australia, 2013, pp. 167172.
    5. 5)
      • 41. Wang, H.O., Tanaka, K., Griffin, M.F.: ‘An approach to fuzzy control of nonlinear systems: stability and design issues’, IEEE Trans. Fuzzy Syst., 1996, 4, (1), pp. 1423.
    6. 6)
      • 37. Tong, X., Zhao, X.: ‘Power generation control of a monopile hydrostatic wind turbine using an Hloop-shaping torque controller and an lpv pitch controller’, IEEE Trans. Control Syst. Technol., 2018, 26, (6), pp. 21652172.
    7. 7)
      • 19. Rakkiyappan, R., Sakthivel, N., Cao, J.: ‘Stochastic sampled-data control for synchronization of complex dynamical networks with control packet loss and additive time-varying delays’, Neural Netw., 2015, 66, pp. 4663.
    8. 8)
      • 8. Stumberger, G., Polajzer, B., Stumberger, B., et al: ‘Evaluation of experimental methods for determining the magnetically nonlinear characteristics of electromagnetic devices’, IEEE Trans. Magn., 2005, 41, (10), pp. 40304032.
    9. 9)
      • 3. Bao, Y., Wang, H., Zhang, J.: ‘Adaptive inverse control of variable speed wind turbine’, Nonlinear Dyn., 2010, 61, (4), pp. 819827.
    10. 10)
      • 18. Joo, Y.H., Shieh, L.S., Chen, G.: ‘Hybrid state-space fuzzy model-based controller with dual-rate sampling for digital control of chaotic systems’, IEEE Trans. Fuzzy Syst., 1999, 7, (4), pp. 394408.
    11. 11)
      • 29. Melin, P., Astudillo, L., Castillo, O., et al: ‘Optimal design of type-2 and type-1 fuzzy tracking controllers for autonomous mobile robots under perturbed torques using a new chemical optimization paradigm’, Expert Syst. Appl., 2013, 40, (8), pp. 31853195.
    12. 12)
      • 1. Pedersen, N.H., Johansen, P., Andersen, T.O.: ‘Optimal control of a wind turbine with digital fluid power transmission’, Nonlinear Dyn., 2018, 91, (1), pp. 591607.
    13. 13)
      • 27. Nie, M., Tan, W.W.: ‘Towards an efficient type-reduction method for interval type-2 fuzzy logic systems’. Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence). IEEE Int. Conf. on., Hong Kong, China, 2008, pp. 14251432.
    14. 14)
      • 35. Zheng, X., Li, L., Xu, D., et al: ‘Sliding mode MPPT control of variable speed wind power system’. Power and Energy Engineering Conf. 2009. APPEEC 2009. Asia-Pacific. (IEEE), Wuhan, China, 2009, pp. 14.
    15. 15)
      • 10. Xu, F., Cheng, M., Zhang, J.: ‘Multi-objective control of direct-driven wind power generation system with frequency separation’, Chinese J. Electr. Eng., 2017, 3, (1), pp. 4250.
    16. 16)
      • 33. Novak, P., Ekelund, T., Jovik, I., et al: ‘Modeling and control of variable-speed wind-turbine drive-system dynamics’, IEEE Control Systems, 1995, 15, (4), pp. 2838.
    17. 17)
      • 12. Si, G., Zhu, J., Diao, L., et al: ‘Modeling, nonlinear dynamic analysis and control of fractional pmsg of wind turbine’, Nonlinear Dyn., 2017, 88, (2), pp. 9851000.
    18. 18)
      • 36. Song, Y.D., Dhinakaran, B., Bao, X.Y.: ‘Variable speed control of wind turbines using nonlinear and adaptive algorithms’, J. Wind Eng. Ind. Aerodyn., 2000, 85, (3), pp. 293308.
    19. 19)
      • 23. Gunasekaran, N., Saravanakumar, R., Joo, Y.H., et al: ‘Finite-time synchronization of sampled-data T–S fuzzy complex dynamical networks subject to average dwell-time approach’, Fuzzy Sets Syst., 2019, 374, pp. 4059.
    20. 20)
      • 17. Rezaei, M., Behzad, M., Haddadpour, H., et al: ‘Aeroelastic analysis of a rotating wind turbine blade using a geometrically exact formulation’, Nonlinear Dyn., 2017, 89, (4), pp. 23672392.
    21. 21)
      • 11. Wei, Z., Moon, B.Y., Joo, Y.H.: ‘Smooth wind power fluctuation based on battery energy storage system for wind farm’, J. Electr. Eng. Technol., 2014, 9, (6), pp. 21342141.
    22. 22)
      • 26. Sung, H.C., Park, J.B., Joo, Y.H.: ‘Robust observer-based fuzzy control for variable speed wind power system: lmi approach’, Int. J. Control Autom. Syst., 2011, 9, (6), pp. 11031110.
    23. 23)
      • 22. Gunasekaran, N., Joo, Y.H.: ‘Stochastic sampled-data controller for T–S fuzzy chaotic systems and its applications’, IET Control Theory Applic., 2019, 13, (12), pp. 18341843.
    24. 24)
      • 25. Song, D., Yang, J., Fan, X., et al: ‘Maximum power extraction for wind turbines through a novel yaw control solution using predicted wind directions’, Energy Convers. Manage., 2018, 157, pp. 587599.
    25. 25)
      • 30. El-Bardini, M., El-Nagar, A.M.: ‘Interval type-2 fuzzy pid controller for uncertain nonlinear inverted pendulum system’, ISA Trans., 2014, 53, (3), pp. 732743.
    26. 26)
      • 4. Morsi, A., Abbas, H.S., Mohamed, A.M.: ‘Wind turbine control based on a modified model predictive control scheme for linear parameter-varying systems’, IET Control Theory Appl., 2017, 11, (17), pp. 30563068.
    27. 27)
      • 16. Wu, D., Song, J., Shen, Y., et al: ‘Active fault-tolerant linear parameter varying control for the pitch actuator of wind turbines’, Nonlinear Dyn., 2017, 87, (1), pp. 475487.
    28. 28)
      • 39. Liu, K., Seuret, A., Xia, Y.: ‘Stability analysis of systems with time-varying delays via the second-order bessel–legendre inequality’, Automatica, 2017, 76, pp. 138142.
    29. 29)
      • 24. Song, D., Fan, X., Yang, J., et al: ‘Power extraction efficiency optimization of horizontal-axis wind turbines through optimizing control parameters of yaw control systems using an intelligent method’, Appl. Energy, 2018, 224, pp. 267279.
    30. 30)
      • 6. Chinchilla, M., Arnaltes, S., Burgos, J.C.: ‘Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid’, IEEE Trans. Energy Convers., 2006, 21, (1), pp. 130135.
    31. 31)
      • 20. Koo, G.B., Park, J.B., Joo, Y.H.: ‘Sampled-data H fuzzy filtering for nonlinear systems with missing measurements’, Fuzzy Sets Syst., 2017, 316, pp. 8298.
    32. 32)
      • 2. Mechter, A., Kemih, K., Ghanes, M.: ‘Backstepping control of a wind turbine for low wind speeds’, Nonlinear Dyn., 2016, 84, (4), pp. 24352445.
    33. 33)
      • 15. Döşoğlu, M.K.: ‘Nonlinear dynamic modeling for fault ride-through capability of dfig-based wind farm’, Nonlinear Dyn., 2017, 89, (4), pp. 26832694.
    34. 34)
      • 21. Ali, M.S., Gunasekaran, N., Ahn, C.K., et al: ‘Sampled-data stabilization for fuzzy genetic regulatory networks with leakage delays’, IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB), 2018, 15, (1), pp. 271285.
    35. 35)
      • 13. Gunasekaran, N., Joo, Y.H.: ‘Robust sampled-data fuzzy control for nonlinear systems and its applications: free-weight matrix method’, IEEE Trans. Fuzzy Syst., 2019, 27, (11), pp. 21302139.
    36. 36)
      • 7. Lee, H.J., Kim, H., Joo, Y.H., et al: ‘A new intelligent digital redesign for T-S fuzzy systems: global approach’, IEEE Trans. Fuzzy Syst., 2004, 12, (2), pp. 274284.
    37. 37)
      • 28. Wu, D.: ‘Approaches for reducing the computational cost of interval type-2 fuzzy logic systems: overview and comparisons’, IEEE Trans. Fuzzy Syst., 2013, 21, (1), pp. 8099.
    38. 38)
      • 5. Miller, A., Muljadi, E., Zinger, D.S.: ‘A variable speed wind turbine power control’, IEEE Trans. Energy Convers., 1997, 12, (2), pp. 181186.
    39. 39)
      • 31. Huang, J., Ri, M., Wu, D., et al: ‘Interval type-2 fuzzy logic modeling and control of a mobile two-wheeled inverted pendulum’, IEEE Trans. Fuzzy Syst., 2018, 26, (4), pp. 20302038.
    40. 40)
      • 32. Shanmugam, L., Joo, Y.H.: ‘Design of interval type-2 fuzzy-based sampled-data controller for nonlinear systems using novel fuzzy lyapunov functional and its application to PMSM’, IEEE Transactions on Systems, Man, and Cybernetics: System, 2018, DOI: 10-1109/TSMC.2018.2875098.
    41. 41)
      • 40. Wang, J.W., Li, H.X., Wu, H.N.: ‘Fuzzy guaranteed cost sampled-data control of nonlinear systems coupled with a scalar reaction–diffusion process’, Fuzzy Sets Syst., 2016, 302, pp. 121142.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.0816
Loading

Related content

content/journals/10.1049/iet-cta.2019.0816
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address