access icon free Finite-time bounded stabilisation for linear systems with finite-time H 2-gain constraint

This study discusses the finite-time boundedness (FTB) of the state of linear systems with a finite-time H 2-gain performance constraint. With time-varying exogenous disturbances, the sufficient conditions for linear time-invariant and linear time-varying systems to satisfy both the FTB constraint and the finite-time H 2-gain performance constraint are developed. On the basis of the matrix inequality theory, a method for designing a controller by using state feedback is derived for each of the two classes of linear systems. These methods can effectively keep the state from reaching an unacceptable value and modulate the output performance within a specified finite-time interval. Two application examples of the terminal guidance scenario verify the effectiveness of the proposed methods.

Inspec keywords: linear matrix inequalities; Lyapunov methods; linear systems; discrete time systems; control system synthesis; stochastic systems; stability; time-varying systems; state feedback

Other keywords: finite-time bounded stabilisation; linear systems; FTB constraint; time-varying exogenous disturbances; finite-time boundedness; specified finite-time interval; gain performance constraint; gain constraint

Subjects: Time-varying control systems; Stability in control theory; Discrete control systems; Algebra; Linear control systems; Control system analysis and synthesis methods

References

    1. 1)
      • 32. Ren, H.L., Zong, G.D., Hou, L.L., et al: ‘Finite-time resilient decentralized control for interconnected impulsive switched systems with neutral delay’, ISA Trans., 2017, 67, pp. 1929. Available at http://dx.doi.org/10.1016/j.isatra.2017.01.013, accessed on 3/2/2020.
    2. 2)
      • 27. Agulhari, C.M., Lacerda, M.J.: ‘Observer-based state-feedback control design for LPV periodic discrete-time systems’, Eur. J. Control, 2019, 49, pp. 114. Available at https://doi.org/10.1016/j.ejcon.2019.02.002, accessed on 3/2/2020.
    3. 3)
      • 22. Shojaei, F., Arefi, M.M., Khayatian, A., et al: ‘Observer-based fuzzy adaptive dynamic surface control of uncertain non-strict feedback systems with unknown control direction and unknown dead-zone’, IEEE Trans. Syst. Man Cybern. Syst., 2019, 49, pp. 23402351. Available at http://dx.doi.org/10.1109/TSMC.2018.2852725, accessed on 3/2/2020.
    4. 4)
      • 2. Weiss, L., Infante, E.F.: ‘Finite-time stability under perturbing forces and on product spaces’, IEEE Trans. Autom. Control, 1967, 12, (1), pp. 5459.
    5. 5)
      • 10. Hong, Y., Jiang, Z.P., Feng, G.: ‘Finite-time input-to-state stability and applications to finite-time control’. Proc. 17th IFAC World Congress, Seoul, South Korea, 2008, pp. 24662471.
    6. 6)
      • 30. Ren, H., Zong, G.D., Li, T.S.: ‘Event-triggered finite-time control for networked switched linear systems with asynchronous switching’, IEEE Trans. Syst. Man Cybern. Syst., 2018, 48, (11), pp. 18741884.
    7. 7)
      • 16. Yan, Z., Song, Y., Park, J.H.: ‘Finite-time stability and stabilization for stochastic Markov jump systems with mode-dependent time delays’, ISA Trans., 2017, 68, pp. 141149. Available at http://dx.doi.org/10.1016/j.isatra.2017.01.018.
    8. 8)
      • 8. Song, Y., Wang, Y., Krstic, M.: ‘Time-varying feedback for stabilization in prescribed finite time’, Int. J. Robust Nonlinear Control, 2019, 29, pp. 618633. Available at https://doi.org/10.1002/rnc.4084, accessed on 3/2/2020.
    9. 9)
      • 12. Huang, S.P., Xiang, Z.R.: ‘Finite-time stabilization of switched stochastic non-linear systems with mixed odd and even powers’, Automatica, 2016, 73, (11), pp. 130137.
    10. 10)
      • 21. Garcia, G., Tarbouriech, S., Bernussou, J.: ‘Finite-time stabilization of linear time-varying continuous systems’, IEEE Trans. Autom. Control, 2009, 54, (2), pp. 364369.
    11. 11)
      • 34. Zhou, K., Doyle, J., Glover, K.: ‘Robust and optimal control’ (Prentice-Hall, Upper Saddle River, NJ, 1996).
    12. 12)
      • 41. Lin, C., Wang, Q.G., Lee, T.H.: ‘Stabilization of uncertain fuzzy time-delay systems via variable structure control approach’, IEEE Trans. Fuzzy Syst., 2006, 13, (6), pp. 787797.
    13. 13)
      • 40. Elhalwagya, Y.Z., Tarbouchib, M.: ‘Fuzzy logic sliding mode control for command guidance law design’, ISA Trans., 2004, 43, (2), pp. 231242.
    14. 14)
      • 31. Zong, G.D., Ren, H.L., Hou, L.L.: ‘Finite-time stability of interconnected impulsive switched systems’, IET Control Theory Appl., 2016, 10, (6), pp. 648654.
    15. 15)
      • 18. Zhang, S., Guo, Y., Wang, S.C., et al: ‘Input–output finite-time stability of discrete-time systems under finite-time boundedness’, Int. J. Syst. Sci., 2019, 50, pp. 419431. Available at http://dx.doi.org/10.1080/00207721.2018.155417, accessed on 3/2/2020.
    16. 16)
      • 38. Gahinet, P., Nemirovski, A., Laub, A.J., et al: ‘LMI control toolbox’ (The Mathworks Inc., Lake Buena Vista, FL, USA, 1995).
    17. 17)
      • 1. Dorato, P.: ‘Short-time stability in linear time-varying systems’. Proc. IRE Int. Convention Record Part 4, New York, USA, 1961, pp. 8387.
    18. 18)
      • 25. Lu, J., She, Z., Ge, S.S., et al: ‘Stability analysis of discrete-time switched systems via multi-step multiple Lyapunov-like function’, Nonlinear Anal. Hybrid Syst., 2018, 27, (2), pp. 4461.
    19. 19)
      • 6. Guo, Y., Wang, S.C., Yao, Y., et al: ‘Evader maneuver on consideration of energy consumption in flight vehicle interception scenarios’, Aerosp. Sci. Technol., 2011, 15, (7), pp. 519525.
    20. 20)
      • 11. Wu, J., Chen, W.S., Li, J.: ‘Global finite-time adaptive stabilization for non-linear systems with multiple unknown control directions’, Automatica, 2016, 69, (7), pp. 298307.
    21. 21)
      • 36. Farges, C., Peaucelle, D., Arzelier, D., et al: ‘Robust H2 performance analysis and synthesis of linear polytopic discrete-time periodic systems via LMIs’, Syst. Control Lett., 2007, 56, (2), pp. 159166.
    22. 22)
      • 39. Shaked, U., Suplin, V.: ‘A new bounded real lemma representation for the continuous-time case’, IEEE Trans. Autom. Control, 2001, 46, (9), pp. 14201426.
    23. 23)
      • 20. Liu, H., Shen, Y., Zhao, X.D.: ‘Finite-time stabilization and boundedness of switched linear system under state-dependent switching’, J. Franklin Inst., 2013, 350, (3), pp. 541555.
    24. 24)
      • 14. Xi, J.X., Wang, C., Liu, H., et al: ‘Dynamic output feedback guaranteed-cost synchronization for multiagent networks with given cost budgets’, IEEE Access, 2018, 6, pp. 2892328935.
    25. 25)
      • 3. Amato, F., Ariola, M., Dorato, P.: ‘Finite-time control of linear systems subject to parametric uncertainties and disturbances’, Automatica, 2001, 37, (9), pp. 14591463.
    26. 26)
      • 9. Bhat, S.P., Bernstein, D.S.: ‘Finite-time stability of continuous autonomous systems’, SIAM J. Control Optim., 2000, 38, (3), pp. 751766.
    27. 27)
      • 26. Agulhari, C.M., Peres, P.L.D.: ‘Computing stabilizing output-feedback gains for continuous-time linear time-varying systems through discrete-time periodic models’, Int. J. Control, 2019, pp. 111, doi: 10.1080/00207179.2019.1612097.
    28. 28)
      • 33. Doyle, J., Glover, K., Khargonekar, P., et al: ‘State-space solutions to standard H2 and H control problems’, IEEE Trans. Autom. Control, 1989, 34, (8), pp. 831847.
    29. 29)
      • 23. Zong, G., Wang, R., Zheng, W., et al: ‘Finite-time H control for discrete-time switched non-linear systems with time delay’, Int. J. Robust Nonlinear Control, 2015, 25, (6), pp. 914936.
    30. 30)
      • 17. Amato, F., Ambrosino, R., Ariola, M., et al: ‘Finite-time stability of linear time-varying systems with jumps’, Automatica, 2009, 45, (5), pp. 13541358.
    31. 31)
      • 7. Zhang, Y.Q., Liu, C.X., Mu, X.W.: ‘Robust finite-time stabilization of uncertain singular Markovian jump systems’, Appl. Math. Model., 2012, 36, (10), pp. 51095121.
    32. 32)
      • 35. Rotea, M.A.: ‘The generalized H2 control problem’, Automatica, 1993, 29, (2), pp. 373385.
    33. 33)
      • 15. Hu, Y., Duan, G., Tan, F.:Finite-time control for LPV systems with parameter-varying time delays and exogenous disturbances’, Int. J. Robust Nonlinear Control, 2017, 27, pp. 38413861. Available at https://doi.org/10.1002/rnc.3768, accessed on 3/2/2020.
    34. 34)
      • 28. Tang, Y., Xing, X., Karimi, H.R., et al: ‘Tracking control of networked multi-agent systems under new characterizations of impulses and its applications in robotic systems’, IEEE Trans. Ind. Electron.2016, 63, pp. 12991307. Available at http://dx.doi.org/10.1109/TIE.2015.2453412, accessed on 3/2/2020.
    35. 35)
      • 5. Lv, X., Li, X.: ‘Finite-time stability and controller design for non-linear impulsive sampled-data systems with applications’, ISA Trans., 2017, 70, pp. 3036. Available at http://dx.doi.org/10.1016/j.isatra.2017.07.025, accessed on 3/2/2020.
    36. 36)
      • 37. Lin, X.Z., Du, H.B., Li, S.H.: ‘Finite-time boundedness and L2-gain analysis for switched delay systems with norm-bounded disturbance’, Appl. Math. Comput., 2011, 217, (12), pp. 59825993.
    37. 37)
      • 24. Huang, S., Xiang, Z., Karimi, H.: ‘Input–output finite-time stability of discrete-time impulsive switched linear systems with state delays’, Circuits Syst. Signal Process., 2014, 33, (1), pp. 141158.
    38. 38)
      • 19. Zhang, S., Guo, Y., Wang, S.C., et al: ‘Finite-time output stability of impulse switching system with norm-bounded state constraint’, IEEE Access, 2019, 7, pp. 8292782938. Available at http://dx.doi.org/10.1109/ACCESS.2019.2923807, accessed on 3/2/2020.
    39. 39)
      • 13. Amato, F., Ariola, M., Cosentino, C.: ‘Finite-time stability of linear time-varying systems: analysis and controller design’, IEEE Trans. Autom. Control, 2010, 55, (4), pp. 10031008.
    40. 40)
      • 42. Guo, Y., Yao, Y., Wang, S.C., et al: ‘Maneuver control strategies to maximize prediction errors in ballistic middle phase’, J. Guid. Control Dyn., 2013, 36, (4), pp. 12251234.
    41. 41)
      • 29. Amato, F., De Tommasi, G., Pironti, A.: ‘Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems’, Automatica, 2013, 49, (8), pp. 25462550.
    42. 42)
      • 4. Guo, Y., Yao, Y., Wang, S.C., et al: ‘Input–output finite-time stabilization of linear systems with finite-time boundedness’, ISA Trans., 2014, 53, (4), pp. 977982.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.0754
Loading

Related content

content/journals/10.1049/iet-cta.2019.0754
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading