access icon free Interval observer design method for asynchronous switched systems

When designing interval observers for switched systems, for simplicity, it is always assumed that the switching signal of interval observers is synchronised with one of subsystems. However, in fact, they are asynchronous in most cases. In this study, the interval observer design problem for discrete-time switched systems with asynchronous switching law is investigated. At first, a robust observer is designed based on the observer theory. Then, in order to reduce the conservatism of design conditions and improve the performance of the interval observer, the zonotope method is applied to estimate the bounds of system state. Finally, two examples are provided to highlight the efficiency of the proposed method.

Inspec keywords: control system synthesis; discrete time systems; time-varying systems; robust control; nonlinear control systems; continuous time systems; linear systems; observers; switching systems (control)

Other keywords: robust observer; interval observer design problem; observer theory; switching signal; system state; designing interval observers; asynchronous switched systems; discrete-time switched systems; interval observer design method; asynchronous switching law

Subjects: Discrete control systems; Simulation, modelling and identification; Algebra; Control system analysis and synthesis methods; Stability in control theory; Linear control systems; Time-varying control systems; Nonlinear control systems

References

    1. 1)
      • 31. Le, V., Stoica, C., Alamo, T., et al: ‘Zonotopic guaranteed state estimation for uncertain systems’, Automatica, 2013, 49, (11), pp. 34183424.
    2. 2)
      • 12. Ciccarella, G., Dalla Mora, M., Germani, A.: ‘A Luenberger-like observer for nonlinear systems’, Int. J. Control, 1993, 57, (3), pp. 537556.
    3. 3)
      • 2. Branicky, M.: ‘Multiple Lyapunov functions and other analysis tools for switched and hybrid systems’, IEEE Trans. Autom. Control, 1998, 43, (4), pp. 475482.
    4. 4)
      • 43. Tang, W.T., Wang, Z.H., Shen, Y.: ‘Interval estimation for discrete-time linear systems: a two-step method’, Syst. Control Lett., 2019, 123, pp. 6974.
    5. 5)
      • 39. Alamo, T., Bravo, J., Camacho, E.: ‘Guaranteed state estimation by zonotopes’. Proc. of 42nd IEEE Conf. on Decision and Control, Maui, United Ststes, 2003, pp. 10351043.
    6. 6)
      • 30. Kuhn, W.: ‘Rigorously computed orbits of dynamical systems without the wrapping effect’, Computing, 1998, 61, (1), pp. 4767.
    7. 7)
      • 7. Huo, X., Ma, L., Zhao, X., et al: ‘Event-triggered adaptive fuzzy output feedback control of MIMO switched nonlinear systems with average dwell time’, Appl. Math. Comput., 2020, 365, p. 124665.
    8. 8)
      • 5. Zhang, J., Han, Z., Wu, H.: ‘Robust finite-time stability and stabilisation of switched positive systems’, IET Control Theory Applic., 2013, 8, (1), pp. 6775.
    9. 9)
      • 21. Wang, Y., Karimi, H., Wu, D.: ‘Construction of hybrid interval observers for switched linear systems’, Inf. Sci., 2018, 454, pp. 242254.
    10. 10)
      • 22. Dinh, T., Marouani, G., Raissi, T., et al: ‘Optimal interval observers for discrete-time linear switched systems’, Int. J. Control, 2019, doi: 10.1080/00207179.2019.1575518.
    11. 11)
      • 4. Lin, H., Antsaklis, P.: ‘Stability and stabilizability of switched linear systems: a survey of recent results’, IEEE Trans. Autom. Control, 2009, 54, (2), pp. 308322.
    12. 12)
      • 28. Shephard, G.: ‘Combinatorial properties of associated zonotopes’, Can. J. Math., 1974, 26, (2), pp. 302321.
    13. 13)
      • 29. Guggenheiner, H.: ‘Computing the volume of a zonotope’, Am. Math. Mon., 1990, 97, (5), pp. 431431.
    14. 14)
      • 24. Kurzhanski, A., Varaiya, P.: ‘Ellipsoidal techniques for reachability analysis: internal approximation’, Syst. Control Lett., 2000, 41, (3), pp. 201211.
    15. 15)
      • 26. Vicino, A., Zappa, G.: ‘Sequential approximation of feasible parameter sets for identification with set-membership uncertainty’, IEEE Trans. Autom. Control, 1996, 41, (6), pp. 774785.
    16. 16)
      • 23. Chambon, E., Burlion, L., Apkarian, P.: ‘Overview of linear time-invariant interval observer design: towards a non-smooth optimisation-based approach’, IET Control Theory Applic., 2016, 10, (11), pp. 12581268.
    17. 17)
      • 11. Gauthier, J., Hammouri, H., Othman, S.: ‘A simple observer for nonlinear systems applications to bioreactors’, IEEE Trans. Autom. Control, 1992, 37, (6), pp. 875880.
    18. 18)
      • 27. Puig, V., Cuguero, P., Quevedo, J.: ‘Worst-case state estimation and simulation of uncertain discrete-time systems using zonotopes’. Proc. of 6th European Control Conf., Porto, Portugal, 2001, pp. 16911697.
    19. 19)
      • 25. Walter, E., Piet-Lahanier, H.: ‘Exact recursive polyhedral description of the feasible parameter set for bounded-error models’, IEEE Trans. Autom. Control, 1989, 34, (8), pp. 911915.
    20. 20)
      • 37. Rami, M., Cheng, C., Prada, C.: ‘Tight robust interval observers: an LP approach’. Proc. of 47th IEEE Conf. on Decision and Control, Cancun, Mexico, 2008, pp. 29672972.
    21. 21)
      • 6. Xiang, W., Lam, J., Shen, J.: ‘Stability analysis and L1-gain characterization for switched positive systems under dwell-time constraint’, Automatica, 2017, 85, pp. 18.
    22. 22)
      • 42. Tang, W.T., Wang, Z.H., Wang, Y., et al: ‘Interval estimation methods for discrete-time linear time-invariant systems’, IEEE Trans. Autom. Control, 2019, 64, (11), pp. 47174724.
    23. 23)
      • 3. Hespanha, J., Liberzon, D., Morse, A.: ‘Stability of switched systems with average dwell time’. Proc. of 38th IEEE Conf. on Decision and Control, Phoenix, United States, 1999, pp. 26552660.
    24. 24)
      • 10. Ma, L., Huo, X., Zhao, X., et alObserver-based adaptive neural tracking control for output-constrained switched MIMO nonstrict-feedback nonlinear systems with unknown dead zone’, Nonlinear Dyn., 2020, 99, (2), pp. 10191036.
    25. 25)
      • 32. Combastel, C.: ‘Zonotopes and Kalman observers: gain optimality under distinct uncertainty paradigms and robust convergence’, Automatica, 2015, 55, pp. 265273.
    26. 26)
      • 34. Wang, H., Kolmanovsky, I., Sun, J.: ‘Zonotope-based recursive estimation of the feasible solution set for linear static systems with additive and multiplicative uncertainties’, Automatica, 2015, 95, pp. 236245.
    27. 27)
      • 19. Guo, S., Zhu, F.: ‘Interval observer design for discrete-time switched system’. Proc. of 20th IFAC World Congress, Toulouse, France, 2017, pp. 50735078.
    28. 28)
      • 36. Durieu, C., Walter, E., Polyak, B.: ‘Multi-input multi-output ellipsoidal state bounding’, J. Optim. Theory Appl., 2001, 111, (2), pp. 273303.
    29. 29)
      • 33. Wang, Y., Puig, V., Cembrano, G.: ‘Set-membership approach and Kalman observer based on zonotopes for discrete-time descriptor systems’, Automatica, 2015, 93, pp. 435443.
    30. 30)
      • 14. Luenberger, D.: ‘Observers for multivariable systems’, IEEE Trans. Autom. Control, 1966, 11, (2), pp. 190197.
    31. 31)
      • 1. Narendra, K., Balakrishnan, J.: ‘A common Lyapunov function for stable LTI systems with commuting A-matrices’, IEEE Trans. Autom. Control, 1994, 39, (12), pp. 24692471.
    32. 32)
      • 9. Zhao, X., Wang, X., Ma, L., et al: ‘Fuzzy-approximation-based asymptotic tracking control for a class of uncertain switched nonlinear systems’, IEEE Trans. Fuzzy Syst., 2020, 28, (4), pp. 632644.
    33. 33)
      • 38. Zhao, X., Zhang, L., Shi, P., et al: ‘Stability of a class of switched positive linear systems with average dwell time switching’, Automatica, 2012, 48, (6), pp. 11321137.
    34. 34)
      • 8. Zhao, X., Yin, Y., Liu, L., et al: ‘Stability analysis and delay control for switched positive linear systems’, IEEE Trans. Autom. Control, 2018, 63, (7), pp. 21842190.
    35. 35)
      • 18. Marouani, G., Dinh, T., Raissi, T., et al: ‘Interval observers design for discrete-time linear switched systems’. Proc. of 22nd European Control Conf., Limassol, Cyprus, 2018, pp. 801806.
    36. 36)
      • 13. Rajamani, R.: ‘Observers for Lipschitz nonlinear systems’, IEEE Trans. Autom. Control, 1998, 43, (3), pp. 397401.
    37. 37)
      • 15. Agresti, A., Coull, B.: ‘Approximate is better than ‘exact’ for interval estimation of binomial proportions’, Am. Stat., 1998, 52, (2), pp. 119126.
    38. 38)
      • 16. Gouze, J., Rapaport, A., Hadj-Sadok, Z.: ‘Interval observers for uncertain biological systems’, Ecol. Model., 2000, 133, (1-2), pp. 4556.
    39. 39)
      • 40. Boyd, S., Ghaoui, L., Feron, E.: ‘Linear matrix inequalities in system and control theory’ (SIAM Press, New York, 1994).
    40. 40)
      • 35. Chisci, L., Garulli, A., Zappa, G.: ‘Recursive state bounding by parallelotopes’, Automatica, 1996, 32, (7), pp. 10491055.
    41. 41)
      • 41. Sara, I., Naima, A., Dalil, I., et al: ‘Switched interval observer for uncertain continuous-time systems’. Proc. of 20th IFAC World Congress, Toulouse, France, 2017.
    42. 42)
      • 20. Ethabet, H., Rabehi, D., Efimov, D., et al: ‘Interval estimation for continuous-time switched linear systems’, Automatica, 2018, 90, pp. 230238.
    43. 43)
      • 17. He, Z., Xie, W.: ‘Control of non-linear switched systems with average dwell time: interval observer-based framework’, IET Control Theory Applic., 2016, 10, (1), pp. 1016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.0750
Loading

Related content

content/journals/10.1049/iet-cta.2019.0750
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading