Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Stability-guaranteed dynamic ElGamal cryptosystem for encrypted control systems

Loading full text...

Full text loading...

/deliver/fulltext/iet-cta/14/16/IET-CTA.2019.0729.html;jsessionid=9urhs4s6pb8j3.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cta.2019.0729&mimeType=html&fmt=ahah

References

    1. 1)
      • 19. Blaze, M., Bleumer, G., Strauss, M.: ‘Divertible protocols and atomic proxy cryptography’. Advances in Cryptology (EUROCRYPT '98), Berlin, Heidelberg, 1998, pp. 127144.
    2. 2)
      • 6. Rivest, R.L., Shamir, A., Adleman, L.: ‘A method for obtaining digital signatures and public-key cryptosystems’, Commun. ACM, 1978, 21, (2), pp. 120126.
    3. 3)
      • 16. Kim, J., Lee, C., Shim, H., et al: ‘Encrypting controller using fully homomorphic encryption for security of cyber-physical systems’, IFAC-PapersOnLine, 2016, 49, (22), pp. 175180.
    4. 4)
      • 13. Kishida, M.: ‘Encrypted control system with quantiser’, IET Control Theory Applic., 2019, 13, (1), pp. 146151.
    5. 5)
      • 24. Luenberger, D.: ‘An introduction to observers’, IEEE Trans. Autom. Control, 1971, 16, (6), pp. 596602.
    6. 6)
      • 5. Kogiso, K., Fujita, T.: ‘Cyber-security enhancement of networked control systems using homomorphic encryption’. IEEE Conf. on Decision and Control, Osaka, 2015, pp. 68366843.
    7. 7)
      • 12. Farokhi, F., Shames, I., Batterham, N.: ‘Secure and private control using semi-homomorphic encryption’, Control Eng. Pract., 2017, 67, pp. 1320.
    8. 8)
      • 7. Elgamal, T.: ‘A public key cryptosystem and a signature scheme based on discrete logarithms’, IEEE Trans. Inf. Theory, 1985, 31, (4), pp. 469472.
    9. 9)
      • 28. Zhu, Y., Zheng, W.X., Zhou, D.: ‘Quasi-synchronization of discrete-time Lur'e-type switched systems with parameter mismatches and relaxed PDT constraints’, IEEE Trans. Cybern., 2020, 50, (5), pp. 20262037.
    10. 10)
      • 20. Ivan, A., Dodis, Y.: ‘Proxy cryptography revisited’. Network and Distributed System Security Symp., San Diego, CA, 2003.
    11. 11)
      • 22. Teranishi, K., Shimada, N., Kogiso, K.: ‘Stability analysis and dynamic quantizer for controller encryption’. IEEE Conf. on Decision and Control, Nice, 2019, pp. 71847189.
    12. 12)
      • 14. Brockett, R.W., Liberzon, D.: ‘Quantized feedback stabilization of linear systems’, IEEE Trans. Autom. Control, 2000, 45, (7), pp. 12791289.
    13. 13)
      • 30. Zhu, Y., Zhong, Z., Zheng, W.X., et al: ‘HMM-based H filtering for discrete-time markov jump LPV systems over unreliable communication channels’, IEEE Trans. Syst., 2018, 48, (12), pp. 20352046.
    14. 14)
      • 31. Darup, M.S., Redder, A., Quevedo, D.E.: ‘Encrypted cloud-based MPC for linear systems with input constraints’, IFAC-PapersOnLine, 2018, 51, (20), pp. 535542.
    15. 15)
      • 32. Darup, M.S., Redder, A., Shames, I., et al: ‘Towards encrypted MPC for linear constrained systems’, IEEE Control Syst. Lett., 2018, 2, (2), pp. 195200.
    16. 16)
      • 17. Cheon, J.H., Han, K., Kim, H., et al: ‘Need for controllers having integer coefficients in homomorphically encrypted dynamic system’. IEEE Conf. on Decision and Control, Miami Beach, FL, 2018, pp. 50205025.
    17. 17)
      • 3. Pasqualetti, F., Dörfler, F., Bullo, F.: ‘Attack detection and identification in cyber-physical systems’, IEEE Trans. Autom. Control, 2013, 58, (11), pp. 27152729.
    18. 18)
      • 10. Sandberg, H., Amin, S., Johansson, K.H.: ‘Cyberphysical security in networked control systems: an introduction to the issue’, IEEE Control Syst. Mag., 2015, 35, (1), pp. 2023.
    19. 19)
      • 25. Kogiso, K., Baba, R., Kusaka, M.: ‘Development and examination of encrypted control systems’. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, Auckland, 2018, pp. 13381343.
    20. 20)
      • 18. Shannon, C.E.: ‘Communication theory of secrecy systems’, Bell Syst. Techn. J., 1949, 28, (4), pp. 656715.
    21. 21)
      • 4. Yuan, Y., Yuan, H., Guo, L., et al: ‘Resilient control of networked control system under DoS attacks: a unified game approach’, IEEE Trans. Ind. Inf., 2016, 12, (5), pp. 17861794.
    22. 22)
      • 8. Kogiso, K.: ‘Attack detection and prevention for encrypted control systems by application of switching-key management’. IEEE Conf. on Decision and Control, Miami Beach, FL, 2018, pp. 50325037.
    23. 23)
      • 26. Dorato, P., Levis, A.: ‘Optimal linear regulators: the discrete-time case’, IEEE Trans. Autom. Control, 1971, 16, (6), pp. 613620.
    24. 24)
      • 2. Mo, Y., Sinopoli, B.: ‘Secure control against replay attacks’. Annual Allerton Conf. on Communication, Control, and Computing, Monticello, IL, 2009, pp. 911918.
    25. 25)
      • 21. Dodis, Y., Katz, J., Xu, S., et al: ‘Key-insulated public key cryptosystems’. Advances in Cryptology (EUROCRYPT 2002), Berlin, Heidelberg, 2002, pp. 6582.
    26. 26)
      • 29. Zhang, L., Zhuang, S., Shi, P., et al: ‘Uniform tube based stabilization of switched linear systems with mode-dependent persistent dwell-time’, IEEE Trans. Autom. Control, 2015, 60, (11), pp. 29942999.
    27. 27)
      • 23. Kogiso, K.: ‘Upper-bound analysis of performance degradation in encrypted control system’. Annual American Control Conf., Milwaukee, WI, 2018, pp. 12501255.
    28. 28)
      • 9. Baba, R., Kogiso, K., Kishida, M.: ‘Detection method of controller falsification attacks against encrypted control system’. SICE Annual Conf., Nara, 2018, pp. 244248.
    29. 29)
      • 27. Teranishi, K., Kusaka, M., Shimada, N., et al: ‘Secure observer-based motion control based on controller encryption’. Annual American Control Conf., Philadelphia, PA, 2019, pp. 29782983.
    30. 30)
      • 1. Teixeira, A., Shames, I., Sandberg, H., et al: ‘A secure control framework for resource-limited adversaries’, Automatica, 2015, 51, pp. 135148.
    31. 31)
      • 11. Paillier, P.: ‘Public-key cryptosystems based on composite degree residuosity classes’. Advances in Cryptology (EUROCRYPT' 99), Berlin, Heidelberg, 1999, pp. 223238.
    32. 32)
      • 15. Gentry, C. (2009). ‘A fully homomorphic encryption scheme’. PhD thesis, Stanford University. Stanford, CA, USA.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.0729
Loading

Related content

content/journals/10.1049/iet-cta.2019.0729
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address