access icon free Family of controllers based on sector non-linear functions: an application for first-order dynamical systems

This study proposes the design of a family of controllers based on sector non-linear functions for first-order dynamical systems. Three new controllers that incorporate these types of functions are presented and analysed to validate the authors' premise. The proposed nominal controllers and an augmented version with integral action are presented. Asymptotic stability is proven under the Lyapunov theory and the controllers' performance is compared against a traditional proportional controller. An empirically tuned relation depending on a constant bound value and an operation range is proposed; this is used to compute the gains of each controller. Simulation results with all of the controllers under saturation bounds are presented to illustrate the effectiveness of the method at solving the output regulation and the tracking control problems, under practical physical assumptions. The numerical comparison utilises the and norms over the output error, and over the control variable, applying the same saturation bounds for each controller.

Inspec keywords: position control; feedback; asymptotic stability; nonlinear control systems; control system synthesis; robust control; Lyapunov methods

Other keywords: constant bound value; nominal controllers; traditional proportional controller; first-order dynamical systems; tracking control problems; sector nonlinear functions; saturation bounds; control variable

Subjects: Control system analysis and synthesis methods; Nonlinear control systems; Stability in control theory; Spatial variables control

References

    1. 1)
      • 21. Zhuang, M., Atherton, D.P.: ‘Automatic tuning of optimum PID controllers’, IEE Proc. D, Control Theory Appl., 1993, 140, (3), pp. 216224.
    2. 2)
      • 4. Bender, E.A.: ‘An introduction to mathematical modeling’ (Dover Publications (Educa Books), USA, 2000, 1st edn.).
    3. 3)
      • 14. Englsberger, J., Ott, C., Albu Schäffer, A.: ‘Three-dimensional bipedal walking control using divergent component of motion’. 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Tokyo, Japan, 2013, pp. 26002607.
    4. 4)
      • 27. Peñaloza Mejía, O., Clemente, E., Meza Sánchez, M., et al: ‘Evolving behaviors for bounded-flow tracking control of second-order dynamical systems’, Eng. Appl. Artif. Intel., 2019, 78, pp. 1227.
    5. 5)
      • 7. Gazi, V., Passino, K.M.: ‘Swarms of single integrator agents’, in Gazi, V., Passino, K.M. (Eds.): ‘Swarm stability and optimization’ (Springer, Berlin, Heidelberg, 2011, 1st edn.), pp. 2973.
    6. 6)
      • 25. Bhattacharyya, S., Datta, A., Keel, L., et al: ‘Linear control theory. Structure, robustness, and optimization’ (CRC Press, Boca Raton, 2009).
    7. 7)
      • 18. Skogestad, S.: ‘Simple analytic rules for model reduction and PID controller tuning’, J. Process Control, 2003, 13, (4), pp. 291309.
    8. 8)
      • 19. Rivera, D.E., Morari, M., Skogestad, S.: ‘Internal model control: PID controller design’, Ind. Eng. Chem. Process Des. Dev., 1986, 5, (1), pp. 252265.
    9. 9)
      • 24. Verma, B., Padhy, P.K.: ‘Optimal PID controller design with adjustable maximum sensitivity’, IET Control Theory Appl., 2018, 12, (8), pp. 11561165.
    10. 10)
      • 23. Nguyen, N.H., Nguyen, P.D.: ‘Overshoot and settling time assignment with PID for first-order and second-order systems’, IET Control Theory Appl., 2018, 12, (17), pp. 24072416.
    11. 11)
      • 6. Tzafestas, S.G.: ‘Introduction to mobile robot control’ (Elsevier, USA, 2014, 1st edn.).
    12. 12)
      • 17. Ziegler, J.G., Nichols, N.B.: ‘Optimum settings for automatic controllers’, Trans. ASME, 1942, 64, pp. 759768.
    13. 13)
      • 8. Zhao, S., Sun, Z.: ‘Defend the practicality of single-integrator models in multi-robot coordination control’. 2017 13th IEEE Int. Conf. on Control Automation (ICCA), Ohrid, Republic of North Macedonia, 2017, pp. 666671.
    14. 14)
      • 29. Na, J., Chen, Q., Ren, X.: ‘Saturation dynamics and modeling’, in Na, J., Chen, Q., Ren, X. (Eds.): ‘Adaptive identification and control of uncertain systems with non-smooth dynamics’, ‘Emerging methodologies and applications in modelling’ (Academic Press, Elsevier, 2018), pp. 195201.
    15. 15)
      • 3. Hu, T., Huang, B., Lin, Z.: ‘Absolute stability with a generalized sector condition’, IEEE Trans. Autom. Control, 2004, 49, (4), pp. 535548.
    16. 16)
      • 13. Hopkins, M.A., Hong, D.W., Leonessa, A.: ‘Humanoid locomotion on uneven terrain using the time-varying divergent component of motion’. Proc. 2014 IEEE-RAS Int. Conf. on Humanoid Robots, Madrid, Spain, November 2014, pp. 266272.
    17. 17)
      • 26. Peñaloza Mejía, O., Clemente, E., Meza Sánchez, M., et al: ‘Gp-based motion control design for the double-integrator system subject to velocity constraint’. Proc. Genetic and Evolutionary Computation Conf. Companion, GECCO '17, New York, NY, USA, July 2017, pp. 7374.
    18. 18)
      • 28. Tarbouriech, S., Loquen, T., Prieur, C.: ‘Anti-windup strategy for reset control systems’, Int. J. Robust Nonlin., 2011, 21, (10), pp. 11591177.
    19. 19)
      • 22. Soltesz, K., Cervin, A: ‘When is PID a good choice?’. 3rd IFAC Conf. on Advances in Proportional-Integral-Derivative Control PID, Ghent, Belgium, 2018, pp. 250255.
    20. 20)
      • 15. Katebi, M.R., Moradi, M.H.: ‘Predictive PID controllers’, IEE Proc. Control Theory Appl., 2001, 148, (6), pp. 478487.
    21. 21)
      • 10. Antonelli, G., Arrichiello, F., Caccavale, F., et al: ‘Decentralized time-varying formation control for multi-robot systems’, Int. J. Robot. Res., 2014, 33, (7), pp. 10291043.
    22. 22)
      • 1. Shinskey, F.G.: ‘Process control systems: application, design, and adjustment’ (Mcgraw-Hill, USA, 1988).
    23. 23)
      • 20. Åström, K., Hägglund, T., Hang, C.C., et al: ‘Automatic tuning and adaptation for PID controllers – a survey’, Control Eng. Pract., 1993, 1, (4), pp. 699714.
    24. 24)
      • 11. Feng, Y., Zheng, W.X.: ‘Group consensus control for discrete-time heterogeneous first- and second-order multi-agent systems’, IET Control Theory Appl., 2018, 12, (6), pp. 753760.
    25. 25)
      • 2. Åström, K., Hägglund, T.: ‘PID controllers: theory, design and tuning’ (ISA: The Instrumentation, Systems, and Automation Society, USA, 1988, 2nd edn.).
    26. 26)
      • 12. Takenaka, T., Matsumoto, T., Yoshiike, T.: ‘Real time motion generation and control for biped robot -1st report: walking gait pattern generation’. Proc. 2009 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, St. Louis, MO, USA, October 2009, pp. 10841091.
    27. 27)
      • 16. Benaskeur, A.R., Desbiens, A.: ‘Backstepping-based adaptive PID control’, IEE Proc. Control Theory Appl., 2002, 149, (1), pp. 5459.
    28. 28)
      • 5. Waldron, K.J., Schmiedeler, J.: ‘Kinematics’, in Siciliano, B., Khatib, O. (Eds.): ‘Springer handbook of robotics’ (Springer International Publishing, Germany, 2016, 1st edn.), pp. 1136.
    29. 29)
      • 9. Zhao, S., Dimarogonas, D.V., Sun, Z., et al: ‘A general approach to coordination control of mobile agents with motion constraints’, IEEE Trans. Autom. Control, 2018, 63, (5), pp. 15091516.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.0680
Loading

Related content

content/journals/10.1049/iet-cta.2019.0680
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading