access icon free HMM-based filtering for slow-sampling singularly perturbed jumping systems

This study concentrates on the filtering for the slow-sampling jumping singularly perturbed systems, in which the situation that the filter mode is inconsistent with the system mode is taken into consideration. Based on the hidden-Markov model (HMM), such an asynchronous phenomenon between the system mode and the filter mode is depicted. Additionally, the unreliable communication channel resulting in packet loss is described through the assistance of a random variable. The authors' purpose is to design a filter that ensures the error system is extended stochastically dissipative. Moreover, with the aid of the Lyapunov stability theory and linear matrix inequality approach, a set of -independent conditions are derived to obtain the filter gains. Eventually, the effectiveness of the proposed method is demonstrated by a numerical example and a modified tunnel diode circuit model.

Inspec keywords: Lyapunov methods; singularly perturbed systems; stochastic processes; stability; Markov processes; hidden Markov models; linear matrix inequalities

Other keywords: system mode; slow-sampling singularly perturbed jumping systems; error system; filter gains; hidden-Markov model; unreliable communication channel; slow-sampling jumping; HMM-based filtering; filter mode

Subjects: Control system analysis and synthesis methods; Algebra; Probability theory, stochastic processes, and statistics; Stability in control theory; Optimal control; Markov processes

References

    1. 1)
      • 12. Trinh, H., Aldeen, I.: ‘Robust stability of singularly perturbed discrete-delay systems’, IEEE Trans. Autom. Control, 1995, 40, (9), pp. 16201623.
    2. 2)
      • 26. Li, H., Wang, Y., Yao, D., et al: ‘A sliding mode approach to stabilization of nonlinear markovian jump singularly perturbed systems’, Automatica, 2018, 97, pp. 404413.
    3. 3)
      • 42. Rabiner, L.R.: ‘A tutorial on hidden markov models and selected applications in speech recognition’, Proc. IEEE, 1989, 77, (2), pp. 257286.
    4. 4)
      • 22. Zhou, B., Liu, Q., Mazenc, F.: ‘Stabilization of linear systems with both input and state delays by observer-predictors’, Automatica, 2017, 83, pp. 368377.
    5. 5)
      • 21. Zhang, X., Ding, F., Xu, L., et al: ‘State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle’, IET Control Theory Appl., 2018, 12, (12), pp. 17041713.
    6. 6)
      • 5. Song, J., Niu, Y.: ‘Dynamic event-triggered sliding mode control: dealing with slow sampling singularly perturbed systems’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2020, 67, (6), pp. 10791083.
    7. 7)
      • 36. Men, Y., Huang, X., Wang, Z., et al: ‘Quantized asynchronous dissipative state estimation of jumping neural networks subject to occurring randomly sensor saturations’, Neurocomputing, 2018, 291, pp. 207214.
    8. 8)
      • 19. Shen, L., Yang, X., Wang, J., et al: ‘Passive gain-scheduling filtering for jumping linear parameter varying systems with fading channels based on the hidden Markov model’, Proc. Inst. Mech. Eng. I, J. Syst. Control Eng., 2019, 233, (1), pp. 6779.
    9. 9)
      • 14. Chen, J., Sun, F., Yin, Y., et al: ‘State feedback robust stabilisation for discrete-time fuzzy singularly perturbed systems with parameter uncertainty’, IET Control Theory Appl., 2011, 5, (10), pp. 11951202.
    10. 10)
    11. 11)
      • 23. Su, X., Shi, P., Wu, L., et al: ‘Reliable filtering with strict dissipativity for T-S fuzzy time-delay systems’, IEEE Trans. Cybern., 2014, 44, (12), pp. 24702483.
    12. 12)
      • 24. Aliyu, M., Perrier, M., Baron, L.: ‘Filtering for discrete-time nonlinear singularly-perturbed systems’, Nonlinear Dyn., 2012, 12, (1), pp. 1936.
    13. 13)
      • 2. Dong, J., Yang, G.-H.: ‘H control design for fuzzy discrete-time singularly perturbed systems via slow state variables feedback: an LMI-based approach’, Inf. Sci., 2009, 179, (17), pp. 30413058.
    14. 14)
      • 37. Dai, M., Huang, Z., Xia, J., et al: ‘Non-fragile extended dissipativity-based state feedback control for 2-D Markov jump delayed systems’, Appl. Math. Comput., 2019, 362, pp. 124571.
    15. 15)
      • 17. Xing, M., Xia, J., Wang, J., et al: ‘Asynchronous H filtering for nonlinear persistent dwell-time switched singular systems with measurement quantization’, Appl. Math. Comput., 2019, 362, pp. 124578.
    16. 16)
      • 30. Shen, Y., Wu, Z.-G., Shi, P., et al: ‘Asynchronous filtering for Markov jump neural networks with quantized outputs’, IEEE Trans. Syst. Man Cybern. Syst., 2019, 49, (2), pp. 433443.
    17. 17)
      • 31. Zhu, Y., Zhong, Z., Zheng, W.X., et al: ‘HMM -based H filtering for discrete-time Markov jump LPV systems over unreliable communication channels’, IEEE Trans. Syst. Man Cybern. Syst., 2018, 48, (12), pp. 20352046.
    18. 18)
      • 38. Xia, J., Chen, G., Sun, W.: ‘Extended dissipative analysis of generalized Markovian switching neural networks with two delay components’, Neurocomputing, 2017, 260, pp. 275283.
    19. 19)
      • 20. Wu, L., Shi, P., Gao, H.: ‘State estimation and sliding-mode control of Markovian jump singular systems’, IEEE Trans. Autom. Control, 2010, 55, (5), pp. 12131219.
    20. 20)
      • 35. Dong, J., Yang, G.-H.: ‘Robust H control for standard discrete-time singularly perturbed systems’, IET Control Theory Appl., 2007, 1, (4), pp. 11411148.
    21. 21)
      • 7. Liu, W., Wang, Z., Dai, H., et al: ‘Dynamic output feedback control for fast sampling discrete-time singularly perturbed systems’, IET Control Theory Appl., 2016, 10, (15), pp. 17821788.
    22. 22)
    23. 23)
      • 32. Liu, H., Sun, F., Hu, Y.: ‘H control for fuzzy singularly perturbed systems’, Fuzzy Sets Syst., 2005, 155, (2), pp. 272291.
    24. 24)
      • 40. Liu, Y., Xu, B.: ‘Filter designing with finite packet losses and its application for stochastic systems’, IET Control Theory Appl., 2011, 5, (6), pp. 775784.
    25. 25)
    26. 26)
      • 27. Yan, Y., Yang, C., Ma, X., et al: ‘Sampled-data H filtering for Markovian jump singularly perturbed systems with time-varying delay and missing measurements’, Int. J. Syst. Sci., 2018, 49, (3), pp. 464478.
    27. 27)
      • 28. Li, X., Lam, J., Gao, H., et al: ‘H and H2 filtering for linear systems with uncertain Markov transitions’, Automatica, 2016, 67, pp. 252266.
    28. 28)
      • 46. Chua, L.O., Desoer, C.A., Kuh, E.S.: ‘Linear and nonlinear circuits’, 1987.
    29. 29)
      • 18. Wang, J., Shen, L., Xia, J., et al: ‘Asynchronous fuzzy dissipative filtering for nonlinear jumping systems subject to fading channels’, J. Franklin Inst., 2020, 357, (1), pp. 589605.
    30. 30)
      • 10. Shen, H., Li, F., Xu, S., et al: ‘Slow state variables feedback stabilization for semi-markov jump systems with singular perturbations’, IEEE Trans. Autom. Control, 2017, 63, (8), pp. 27092714.
    31. 31)
      • 4. Nguang, S., Assawinchaichote, W., Shi, P.: ‘Robust H control design for fuzzy singularly perturbed systems with Markovian jumps: an LMI approach’, IET Control Theory Appl., 2007, 1, (4), pp. 893908.
    32. 32)
      • 11. Abdelrahim, M., Postoyan, R., Daafouz, J.: ‘Event-triggered control of nonlinear singularly perturbed systems based only on the slow dynamics’, Automatica, 2015, 52, pp. 1522.
    33. 33)
      • 44. Tao, J., Wu, Z.-G., Su, H., et al: ‘Asynchronous and resilient filtering for Markovian jump neural networks subject to extended dissipativity’, IEEE Trans. Cybernet., 2019, 49, (7), pp. 25042513.
    34. 34)
      • 15. Shen, H., Men, Y., Wu, Z.G., et al: ‘Network-based quantized control for fuzzy singularly perturbed semi-Markov jump systems and its application’, IEEE Trans. Circuits Syst. I, Reg. Papers, 2019, 66, (3), pp. 11301140.
    35. 35)
      • 41. Vasquez, D., Fraichard, T., Laugier, C.: ‘Incremental learning of statistical motion patterns with growing hidden markov models’, IEEE Trans. Intell. Transp. Syst., 2009, 10, (3), pp. 403416.
    36. 36)
      • 25. Peng, T., Han, C., Xiong, Y., et al: ‘Filter design for discrete-time singularly perturbed T-S fuzzy systems’, J. Franklin Inst., 2013, 350, (10), pp. 30113028.
    37. 37)
      • 3. Wang, G., Huang, C., Zhang, Q., et al: ‘Stabilisation bound of stochastic singularly perturbed systems with Markovian switching by noise control’, IET Control Theory Appl., 2014, 8, (5), pp. 367374.
    38. 38)
      • 1. Glizer, V.Y., Fridman, E., Feigin, Y.: ‘A novel approach to exact slow-fast decomposition of linear singularly perturbed systems with small delays’, SIAM J. Control Optim., 2017, 55, (1), pp. 236274.
    39. 39)
    40. 40)
      • 45. Assawinchaichote, W., Nguang, S.K., Shi, P.: ‘H fuzzy filter design for uncertain nonlinear singularly perturbed systems with Markovian jumps: an LMI approach’, Inf. Sci., 2007, 177, (7), pp. 16991714.
    41. 41)
      • 29. Zhang, L., Zhu, Y., Shi, P., et al: ‘Resilient asynchronous H filtering for Markov jump neural networks with unideal measurements and multiplicative noises’, IEEE Trans. Cybern., 2015, 45, (12), pp. 28402852.
    42. 42)
      • 6. Naidu, D.: ‘Singular perturbations and time scales in control theory and applications: an overview’, Dyn. Continuous Discrete Impulsive. Syst. Ser. B: Appl. Algorithm, 2002, 9, pp. 233278.
    43. 43)
      • 9. Wan, X., Wang, Z., Wu, M., et al: ‘H state estimation for discrete-time nonlinear singularly perturbed complex networks under the round-Robin protocol’, IEEE Trans. Neural Netw. Learn. Syst., 2019, 30, (2), pp. 415426.
    44. 44)
      • 39. Zhang, B., Zheng, W.X., Xu, S.: ‘Filtering of Markovian jump delay systems based on a new performance index’, IEEE Trans. Circuits Syst. I, Reg. Papers, 2013, 60, (5), pp. 12501263.
    45. 45)
      • 34. Fridman, E.: ‘Robust sampled-data H control of linear singularly perturbed systems’, IEEE Trans. Autom. Control, 2006, 51, (3), pp. 470475.
    46. 46)
      • 43. Juang, B.-H., Levinson, S., Sondhi, M.: ‘Maximum likelihood estimation for multivariate mixture observations of markov chains (corresp.)’, IEEE Trans. Inf. Theory, 1986, 32, (2), pp. 307309.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.0661
Loading

Related content

content/journals/10.1049/iet-cta.2019.0661
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading