Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Zonotopic fault detection observer design for discrete-time systems with adaptively adjusted event-triggered mechanism

This study addresses the event-triggered fault detection for a class of discrete-time systems with unknown but bounded external disturbance and measurement noise. In order to save limited network bandwidth, an adaptively adjusted event-triggered scheme is designed by considering the probability of system failure and the fault detection progress. Based on the event-triggered system output, an fault detection observer is well designed in finite frequency ranges, such that the generated residual is sensitive to injected faults and robust against disturbance and noise. Moreover, a novel zonotope-based residual evaluation strategy is constructed to reduce conservatism by considering the impacts of external disturbance, measurement noise and measured error caused by event-triggered scheme. Finally, simulation results are provided to demonstrate the effective performance of the proposed event-triggered fault detection strategy.

References

    1. 1)
      • 27. Tang, W., Wang, Z., Shen, Y.: ‘Fault detection and isolation for discrete-time descriptor systems based on H_/L observer and zonotopic residual evaluation’, Int. J. Control, 2018, DOI: 10.1080/00207179.2018.1535716.
    2. 2)
      • 46. Wang, Y.L., Lim, C.C., Shi, P.: ‘Adaptively adjusted event-triggering mechanism on fault detection for networked control systems’, IEEE Trans. Cybern., 2017, 47, (8), pp. 22992311.
    3. 3)
      • 24. Wang, Z., Lim, C.C., Shi, P., et al: ‘H_/L fault detection observer design for linear parameter-varying systems’, IFAC-PapersOnLine, 2017, 50, (1), pp. 1527115276.
    4. 4)
      • 30. Li, J., Wang, Z., Shen, Y., et al: ‘Zonotopic fault detection observer design for Takagi–Sugeno fuzzy systems’, Int. J. Syst. Sci., 2018, 49, (15), pp. 32163230.
    5. 5)
      • 15. Wang, Z., Shen, Y., Zhang, X.: ‘Actuator fault estimation for a class of nonlinear descriptor systems’, Int. J. Syst. Sci., 2014, 45, (3), pp. 487496.
    6. 6)
      • 39. Sakthivel, R., Santra, S., Kaviarasan, B., et al: ‘Dissipative analysis for network-based singular systems with non-fragile controller and event-triggered sampling scheme’, J. Franklin Inst., 2017, 354, (12), pp. 47394761.
    7. 7)
      • 38. Fei, Z., Guan, C., Gao, H.: ‘Exponential synchronization of networked chaotic delayed neural network by a hybrid event trigger scheme’, IEEE Trans. Neural Netw. Learn. Syst., 2018, 29, (6), pp. 25582567.
    8. 8)
      • 11. Sathishkumar, M., Sakthivel, R., Alzahrani, F., et al: ‘Mixed H and passivity-based resilient controller for nonhomogeneous Markov jump systems’, Nonlinear Anal., Hybrid Syst., 2019, 31, pp. 8699.
    9. 9)
      • 20. Henry, D., Cieslak, J., Zolghadri, A., et al: ‘H_/H LPV solutions for fault detection of aircraft actuator faults: bridging the gap between theory and practice’, Int. J. Robust Nonlinear Control, 2015, 25, (5), pp. 649672.
    10. 10)
      • 19. Chadli, M., Abdo, A., Ding, S.X.: ‘H_/H fault detection filter design for discrete-time takagi–sugeno fuzzy system’, Automatica, 2013, 49, (7), pp. 19962005.
    11. 11)
      • 25. Han, W., Wang, Z., Shen, Y., et al: ‘H_/L fault detection for linear discrete-time descriptor systems’, IET Control Theory Applic., 2018, 12, (15), pp. 21562163.
    12. 12)
      • 7. Li, X.J., Shi, C.X., Yang, G.H.: ‘Observer-based adaptive output-feedback fault-tolerant control of a class of complex dynamical networks’, IEEE Trans. Syst. Man Cybern. Syst., 2018, 48, (12), pp. 24072418, DOI: 10.1109/TSMC.2017.2688581.
    13. 13)
      • 8. Sakthivel, R., Joby, M., Wang, C., et al: ‘Finite-time fault-tolerant control of neutral systems against actuator saturation and nonlinear actuator faults’, Appl. Math. Comput., 2018, 332, pp. 425436.
    14. 14)
      • 42. Qiu, A., Al-Dabbagh, A.W., Chen, T.: ‘A tradeoff approach for optimal event-triggered fault detection’, IEEE Trans. Ind. Electron., 2019, 66, (3), pp. 21112121.
    15. 15)
      • 33. Zhang, H., Yan, H., Yang, F., et al: ‘Quantized control design for impulsive fuzzy networked systems’, IEEE Trans. Fuzzy Syst., 2011, 19, (6), pp. 11531162.
    16. 16)
      • 1. Raajananthini, K., Sakthivel, R., Ahn, C.K., et al: ‘Fault-tolerant control of two-dimensional discrete-time systems’, IET Control Theory Applic., 2017, 12, (4), pp. 524531.
    17. 17)
      • 41. Ning, Z., Yu, J., Pan, Y., et al: ‘Adaptive event-triggered fault detection for fuzzy stochastic systems with missing measurements’, IEEE Trans. Fuzzy Syst., 2018, 26, (4), pp. 22012212.
    18. 18)
      • 9. Fei, Z., Wang, X., Liu, M., et al: ‘Reliable control for vehicle active suspension systems under event-triggered scheme with frequency range limitation’, IEEE Trans. Syst. Man Cybern., Syst., 2019DOI: 10.1109/TSMC.2019.2899942.
    19. 19)
      • 12. Li, X.J., Yang, G.H.: ‘Neural-network-based adaptive decentralized fault-tolerant control for a class of interconnected nonlinear systems’, IEEE Trans. Neural Netw. Learn. Syst., 2018, 29, (1), pp. 144155.
    20. 20)
      • 47. Gu, Y., Yang, G.H.: ‘Event-triggered fault detection for discrete-time Lipschitz nonlinear networked systems in finite-frequency domain’, Neurocomputing, 2017, 260, pp. 245256.
    21. 21)
      • 29. Lenz, M.: ‘Zonotopal algebra and forward exchange matroids’, Adv. Math., 2016, 294, pp. 819852.
    22. 22)
      • 45. Zhai, D., Lu, A.Y., Dong, J., et al: ‘Event triggered H_/H fault detection and isolation for T–S fuzzy systems with local nonlinear models’, Signal Process., 2017, 138, pp. 244255.
    23. 23)
      • 3. Li, X., Karimi, H.R., Wang, Y., et al: ‘Robust fault estimation and fault-tolerant control for Markovian jump systems with general uncertain transition rates’, J. Franklin Inst., 2018, 355, (8), pp. 35083540.
    24. 24)
      • 6. Zhu, X., Xia, Y., Chai, S., et al: ‘Fault detection for vehicle active suspension systems in finite-frequency domain’, IET Control Theory Applic., 2018, 13, (3), pp. 387394.
    25. 25)
      • 26. Li, X.J., Yang, G.H.: ‘Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults’, IEEE Trans. Cybern., 2014, 44, (8), pp. 14461458.
    26. 26)
      • 14. Wei, Y., Qiu, J., Karimi, H.R.: ‘Reliable output feedback control of discrete-time fuzzy affine systems with actuator faults’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2017, 64, (1), pp. 170181.
    27. 27)
      • 35. Yan, H., Yan, S., Zhang, H., et al: ‘L2 control design of event-triggered networked control systems with quantizations’, J. Franklin Inst., 2015, 352, (1), pp. 332345.
    28. 28)
      • 2. Hu, J., Wang, Z., Gao, H.: ‘Joint state and fault estimation for time-varying nonlinear systems with randomly occurring faults and sensor saturations’, Automatica, 2018, 97, pp. 150160.
    29. 29)
      • 10. Wang, X., Yang, G.H.: ‘Cooperative adaptive fault-tolerant tracking control for a class of multi-agent systems with actuator failures and mismatched parameter uncertainties’, IET Control Theory Applic., 2015, 9, (8), pp. 12741284.
    30. 30)
      • 40. Wang, X., Fei, Z., Gao, H., et al: ‘Integral-based event-triggered fault detection filter design for unmanned surface vehicles’, IEEE Trans. Ind. Inf., 2019, 15, (10), pp. 56265636.
    31. 31)
      • 43. Liu, X., Su, X., Shi, P., et al: ‘Fault detection filtering for nonlinear switched systems via event-triggered communication approach’, Automatica, 2019, 101, pp. 365376.
    32. 32)
      • 5. Li, Y., Karimi, H.R., Zhong, M., et al: ‘Fault detection for linear discrete time-varying systems with multiplicative noise: the finite-horizon case’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2018, 65, (10), pp. 34923505.
    33. 33)
      • 49. Gahinet, P., Apkarian, P.: ‘A linear matrix inequality approach to H control’, Int. J. Robust Nonlinear Control, 1994, 4, (4), pp. 421448.
    34. 34)
      • 34. Xie, X., Liu, Q.: ‘Multi-instant fuzzy control design of nonlinear networked systems with data packet dropouts’, Neurocomputing, 2016, 194, pp. 151156.
    35. 35)
      • 31. Bai, J., Su, H., Gao, J., et al: ‘Modeling and stabilization of a wireless network control system with packet loss and time delay’, J. Franklin Inst., 2012, 349, (7), pp. 24202430.
    36. 36)
      • 16. Li, X.J., Yan, J.J., Yang, G.H.: ‘Adaptive fault estimation for T–S fuzzy interconnected systems based on persistent excitation condition via reference signals’, IEEE Trans. Cybern., 2019, 49, (8), pp. 28222834.
    37. 37)
      • 48. Combastel, C.: ‘Zonotopes and Kalman observers: gain optimality under distinct uncertainty paradigms and robust convergence’, Automatica, 2015, 55, pp. 265273.
    38. 38)
      • 44. Wu, T., Li, F., Yang, C., et al: ‘Event-based fault detection filtering for complex networked jump systems’, IEEE/ASME Trans. Mechatronics, 2017, 23, (2), pp. 497505.
    39. 39)
      • 23. Wang, Z., Shi, P., Lim, C.C.: ‘H_/H fault detection observer in finite frequency domain for linear parameter-varying descriptor systems’, Automatica, 2017, 86, pp. 3845.
    40. 40)
      • 36. Wu, B., Shen, Q., Cao, X.: ‘Event-triggered attitude control of spacecraft’, Adv. Space Res., 2018, 61, (3), pp. 927934.
    41. 41)
      • 37. Wang, X.L., Yang, G.H.: ‘Event-based fault detection for non-linear networked systems with multi-data transmission and output quantisation’, IET Control Theory Applic., 2017, 11, (16), pp. 26982706.
    42. 42)
      • 18. Liu, F., Huang, J., Shi, Y., et al: ‘Fault detection for discrete-time systems with randomly occurring nonlinearity and data missing: a quadrotor vehicle example’, J. Franklin Inst., 2013, 350, (9), pp. 24742493.
    43. 43)
      • 21. Aouaouda, S., Chadli, M., Shi, P., et al: ‘Discrete-time H_/H sensor fault detection observer design for nonlinear systems with parameter uncertainty’, Int. J. Robust Nonlinear Control, 2015, 25, (3), pp. 339361.
    44. 44)
      • 4. Li, J., Wu, C.Y., Su, Q.: ‘Robust fault detection filter design for interconnected systems subject to packet dropouts and structure changes’, IET Control Theory Applic., 2017, 12, (3), pp. 368376.
    45. 45)
      • 17. Wang, X., Yang, G.H.: ‘Fault-tolerant consensus tracking control for linear multiagent systems under switching directed network’, IEEE Trans. Cybern.DOI: 10.1109/TCYB.2019.2901542.
    46. 46)
      • 22. Wang, J.L., Yang, G.H., Liu, J.: ‘An LMI approach to H_ index and mixed H_/H fault detection observer design’, Automatica, 2007, 43, (9), pp. 16561665.
    47. 47)
      • 13. Zhou, M., Wang, Z., Shen, Y.: ‘Simultaneous fault estimation and fault-tolerant tracking control for uncertain nonlinear discrete-time systems’, Int. J. Syst. Sci., 2017, 48, (7), pp. 13671379.
    48. 48)
      • 28. Xu, F., Puig, V., Ocampo-Martinez, C., et al: ‘Set-theoretic methods in robust detection and isolation of sensor faults’, Int. J. Syst. Sci., 2015, 46, (13), pp. 23172334.
    49. 49)
      • 32. Yan, H., Zhang, H., Yang, F., et al: ‘Event-triggered asynchronous guaranteed cost control for Markov jump discrete-time neural networks with distributed delay and channel fading’, IEEE Trans. Neural Netw. Learn. Syst., 2018, 29, (8), pp. 35883598.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.0354
Loading

Related content

content/journals/10.1049/iet-cta.2019.0354
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address