access icon free Adaptive decentralised control for large-scale non-linear non-strict-feedback interconnected systems with time-varying asymmetric output constraints and dead-zone inputs

This study investigates the neural-network (NN)-based adaptive decentralised controller design issue for a class of large-scale non-linear non-strict-feedback interconnected systems with time-varying asymmetric output constraints and dead-zone inputs. The existences of the non-strict-feedback structure, time-varying asymmetric output constraints, and dead-zone inputs lead to the construction of the controller of each subsystem is very difficult. By applying the inherent property of Gaussian functions employed in radical basis function NNs, the non-strict-feedback structure is skillfully handled, and the adaptive backstepping method is used to construct the desired controllers of all subsystems. Furthermore, Lyapunov stability analysis shows that all the signals of the closed-loop system are ultimately bounded, and each subsystem output can converge to an arbitrarily small and predefined time-varying range with the corresponding constraint is always satisfied by employing a barrier Lyapunov function. Finally, simulation results based on a practical example prove the effectiveness of the proposed design strategy.

Inspec keywords: control system synthesis; closed loop systems; feedback; nonlinear control systems; neurocontrollers; time-varying systems; interconnected systems; decentralised control; Lyapunov methods; adaptive control; control nonlinearities; stability

Other keywords: neural-network-based adaptive decentralised controller design issue; predefined time-varying range; nonstrict-feedback structure; dead-zone inputs; large-scale nonlinear nonstrict-feedback interconnected systems; time-varying asymmetric output constraints; arbitrarily small time-varying range

Subjects: Multivariable control systems; Nonlinear control systems; Control system analysis and synthesis methods; Stability in control theory; Self-adjusting control systems

References

    1. 1)
      • 52. Lin, W., Qian, C.J.: ‘Adaptive control of nonlinearly parameterized systems: a nonsmooth feedback framework’, IEEE Trans. Autom. Control, 2002, 47, (5), pp. 757774.
    2. 2)
      • 55. Sun, Y., Chen, B., Lin, C., et al: ‘Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach’, Inf. Sci., 2016, 369, pp. 748764.
    3. 3)
      • 37. Liu, W., Wei, Y., Hou, M., et al: ‘Integrated guidance and control with partial state constraints and actuator faults’, J. Franklin Inst., 2019, 356, (9), pp. 47854810.
    4. 4)
      • 10. Xi, Z., Ding, Z.: ‘Global decentralised output regulation for a class of large-scale nonlinear systems with nonlinear exosystem’, IET Control Theory Applic., 2007, 1, (5), pp. 15041511.
    5. 5)
      • 30. Ma, L., Huo, X., Zhao, X.D., et al: ‘Adaptive neural control for switched nonlinear systems with unknown backlash-like hysteresis and output dead-zone’, Neurocomputing, 2019, 357, (10), pp. 203214.
    6. 6)
      • 12. Jiang, Z.P.: ‘Decentralized disturbance attenuating output-feedback trackers for large-scale nonlinear systems’, Automatica, 2002, 38, (8), pp. 14071415.
    7. 7)
      • 54. Niu, B., Liu, L.: ‘Global stabilisation for a class of switched high-order stochastic nonlinear systems’, Int. J. Control, 2017, 90, (9), pp. 19161924.
    8. 8)
      • 19. Li, Y., Li, Y.M., Tong, S.C.: ‘Adaptive fuzzy decentralized output feedback control for stochastic nonlinear large-scale systems’, Int. J. Robust Nonlinear Control, 2013, 23, (4), pp. 381399.
    9. 9)
      • 57. Wen, C.Y., Zhou, J., Liu, Z.T., et al: ‘Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance’, IEEE Trans. Autom. Control, 2011, 56, (7), pp. 16721678.
    10. 10)
      • 45. Wang, X.S., Su, C.Y., Hong, H.: ‘Robust adaptive control of a class of nonlinear systems with unknown deadzone’, Automatica, 2004, 40, pp. 407413.
    11. 11)
      • 41. Tang, Z.L., Ge, S.S., Tee, K.P., et al: ‘Robust adaptive neural tracking control for a class of perturbed uncertain nonlinear systems with state constraints’, IEEE Trans. Syst. Man Cybern., Syst., 2016, 46, (12), pp. 16181629.
    12. 12)
      • 28. Niu, B., Zhao, P., Liu, J.D., et al: ‘Global adaptive control of switched uncertain nonlinear systems: an improved MDADT method’, Automatica, 2020, 31, (10), pp. 40844093.
    13. 13)
      • 34. Wang, N., Tong, S.C., Li, Y.M.: ‘Observer-based adaptive fuzzy dynamic surface control of non-linear non-strict feedback system’, IET Control Theory Applic., 2017, 11, (17), pp. 31153121.
    14. 14)
      • 53. Lin, W., Qian, C.J.: ‘Adaptive control of nonlinearly parameterized systems’. Proc. 40th IEEE Conf. on Decision and Control, Orlando, FL, USA, 2001, pp. 41924197.
    15. 15)
      • 22. Li, Y.M., Tong, S.C., Li, T.S.: ‘Hybrid fuzzy adaptive output feedback control design for uncertain MIMO nonlinear systems with time-varying delays and input saturation’, IEEE Trans. Fuzzy Syst., 2016, 24, (4), pp. 841853.
    16. 16)
      • 4. Xie, X.J., Tian, J.: ‘Adaptive state-feedback stabilization of high-order stochastic systems with nonlinear parameterization’, Automatica, 2009, 45, (1), pp. 126133.
    17. 17)
      • 20. Chen, B., Lin, C., Liu, X.P., et al: ‘Adaptive fuzzy tracking control for a class of MIMO nonlinear systems in nonstrict-feedback form’, IEEE Trans. Cybern., 2017, 45, (12), pp. 27442755.
    18. 18)
      • 6. Xie, X.J., Liu, L.: ‘A homogeneous domination approach to state feedback of stochastic high-order nonlinear systems with time-varying delay’, IEEE Trans. Autom. Control, 2013, 58, (2), pp. 494499.
    19. 19)
      • 2. Deng, H., Krsti'c, M., Willians, R.J.: ‘Stabilization of stochastic nonlinear systems driven by noise of unknown covariance’, IEEE Trans. Autom. Control, 2001, 46, (8), pp. 12371253.
    20. 20)
      • 9. Minguillon, F.E., Lanza, G.: ‘Coupling of centralized and decentralized scheduling for robust production in agile production systems’, Proc. CIRP, 2019, 79, pp. 385390.
    21. 21)
      • 21. Chen, B., Liu, X.P., Tong, S.: ‘Adaptive fuzzy output tracking control of MIMO nonlinear systems by backstepping approach’, IEEE Trans. Fuzzy Syst., 2007, 15, (2), pp. 287300.
    22. 22)
      • 29. Zhao, X.D., Wang, X.Y., Ma, L., et al: ‘Fuzzy-approximation-based asymptotic tracking control for a class of uncertain switched nonlinear systems’, IEEE Trans. Fuzzy Syst., 2020, 28, (4), pp. 632644 DOI: 10.1109/TFUZZ.2019.2912138.
    23. 23)
      • 17. Chen, B., Liu, X.P., Ge, S.S., et al: ‘Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach’, IEEE Trans. Fuzzy Syst., 2012, 20, (6), pp. 10121021.
    24. 24)
      • 18. Zhang, T.P., Xia, X.N.: ‘Adaptive output feedback tracking control of stochastic nonlinear systems with dynamic uncertainties’, Int. J. Robust Nonlinear Control, 2015, 25, (9), pp. 12821300.
    25. 25)
      • 13. Liu, X.P., Huang, G.S.: ‘Global decentralized robust stabilization for interconnected uncertain nonlinear systems with multiple inputs’, Automatica, 2001, 37, (9), pp. 14351442.
    26. 26)
      • 59. Li, R.B., Niu, B., Feng, Z.G., et al: ‘Adaptive neural design frame for uncertain stochastic nonlinear non-lower triangular pure-feedback systems with input constraint’, J. Franklin Inst., 2019, 356, (16), pp. 95459564.
    27. 27)
      • 47. He, W., Dong, Y.T., Sun, C.Y.: ‘Adaptive neural network control of unknown nonlinear affine systems with input deadzone and output constraint’, ISA Trans., 2015, 58, pp. 96104.
    28. 28)
      • 56. Jin, X.: ‘Adaptive fixed-time control for MIMO nonlinear systems with asymmetric output constraints using universal barrier functions’, IEEE Trans. Autom. Control, 2019, 64, (7), pp. 30463053.
    29. 29)
      • 32. Niu, B., Li, H., Zhang, Z.Q., et al: ‘Adaptive neural-network-based dynamic surface control for stochastic interconnected nonlinear non-strict-feedback systems with dead zone’, IEEE Trans. Syst. Man Cybern., Syst., 2019, 49, (7), pp. 13861398, DOI: 10.1109/TSMC.2018.2866519.
    30. 30)
      • 31. Wang, H.Q., Chen, B., Liu, K.F., et al: ‘Adaptive neural tracking control for a class of non-strict-feedback stochastic nonlinear systems with unknown backlash-like hysteresis’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (5), pp. 947958.
    31. 31)
      • 26. Niu, B., Wang, D., Alotaibi, N.D., et al: ‘Adaptive neural state-feedback tracking control of stochastic nonlinear switched systems: an average dwell-time method’, IEEE Trans. Neural Netw. Learn. Syst., 2019, 30, (4), pp. 10761087.
    32. 32)
      • 5. Zhao, C.R., Xie, X.J.: ‘Output feedback stabilization using small-gain method and reduced-order observer for stochastic nonlinear systems’, IEEE Trans. Autom. Control, 2013, 58, (2), pp. 523529.
    33. 33)
      • 25. Niu, B., Liu, Y.J., Zhou, W.L., et al: ‘Multiple Lyapunov functions for adaptive neural tracking control of switched nonlinear nonlower-triangular systems’, IEEE Trans. Cybern., 2020, 50, (5), pp. 18771886, DOI: 10.1109/TCYB.2019.2906372.
    34. 34)
      • 60. Wang, M., Chen, B., Dai, S.L.: ‘Direct adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear systems’, Fuzzy Sets Syst., 2007, 158, (24), pp. 26552670.
    35. 35)
      • 27. Niu, B., Wang, D., Liu, M., et al: ‘Adaptive neural output feedback controller design of switched non-lower triangular nonlinear systems with time-delays’, IEEE Trans. Neural Netw. Learn. Syst., 2020, 31, (10), pp. 40844093, DOI: 10.1109/TNNLS.2019.2952108.
    36. 36)
      • 50. Zhou, Q., Shi, P., Xu, S.Y., et al: ‘Observer-based adaptive neural network control for nonlinear stochastic systems with time delay’, IEEE Trans. Neural Netw. Learn. Syst., 2013, 24, (1), pp. 7180.
    37. 37)
      • 33. Dong, Y., Yu, Z.X., Li, S.G., et al: ‘Adaptive output feedback tracking control for switched non-strict-feedback non-linear systems with unknown control direction and asymmetric saturation actuators’, IET Control Theory Applic., 2017, 11, (15), pp. 25392548.
    38. 38)
    39. 39)
      • 39. Aghababa, M.P.: ‘Stabilization of canonical systems via adaptive chattering free sliding modes with no singularity problems’, IEEE Trans. Syst. Man Cybern., Syst., 2020, 50, (5), pp. 16961703, DOI: 10.1109/TSMC.2017.2782767.
    40. 40)
      • 49. Li, J., Chen, W.S., Li, J.M.: ‘Adaptive NN output-feedback decentralized stabilization for a class of large-scale stochastic nonlinear strict-feedback systems’, Int. J. Robust Nonlinear Control, 2011, 21, pp. 452472.
    41. 41)
      • 42. Zhang, S.N., Tang, Z.L., Ge, S.S., et al: ‘Adaptive neural dynamic surface control of output constrained non-linear systems with unknown control direction’, IET Control Theory Applic., 2017, 11, (17), pp. 29943003.
    42. 42)
      • 36. Xi, J., Wang, C., Yang, X., et al: ‘Limited-budget output consensus for descriptor multiagent systems with energy constraints’, IEEE Trans. Cybern., 2020, 50, (11), pp. 45854598, DOI: 10.1109/TCYB.2019.2963172.
    43. 43)
      • 14. Yu, X., Xie, X.J., Wu, Y.Q.: ‘Decentralized adaptive output-feedback control for stochastic interconnected systems with stochastic unmodeled dynamic interactions’, Int. J. Adapt. Control Signal Process., 2011, 25, (8), pp. 740757.
    44. 44)
      • 23. Zhang, Y., Sun, J., Liang, H., et al: ‘Event-triggered adaptive tracking control for multi-agent systems with unknown disturbances’, IEEE Trans. Cybern., 2020, 50, (3), pp. 890901, DOI: 10.1109/TCYB.2018.2869084.
    45. 45)
      • 11. Ye, X.D., Jie, H.: ‘Decentralized adaptive output regulation for a class of large-scale nonlinear systems’, IEEE Trans. Autom. Control, 2003, 48, (2), pp. 276281.
    46. 46)
      • 15. Wen, C.: ‘Decentralized adaptive regulation’, IEEE Trans. Autom. Control, 1994, 39, (10), pp. 21632166.
    47. 47)
      • 24. Zhang, Y., Li, H., Sun, J., et al: ‘Cooperative adaptive event-triggered control for multi-agent systems with actuator failures’, IEEE Trans. Syst. Man Cybern., Syst., 2019, 49, (9), pp. 17591768, DOI: 10.1109/TSMC.2018.2883907.
    48. 48)
      • 44. Tao, G., Kokotovice, P.V.: ‘Adaptive control of plants with unknown dead-zones’, IEEE Trans. Autom. Control, 1994, 31, pp. 5968.
    49. 49)
      • 51. Wang, H.Q., Chen, B., Lin, C.: ‘Adaptive fuzzy decentralized control for a class of large-scale stochastic nonlinear systems’, Neurocomputing, 2013, 103, pp. 155163.
    50. 50)
      • 35. Cao, L., Zhou, Q., Dong, G., et al: ‘Observer-based adaptive event-triggered control for nonstrict-feedback nonlinear systems with output constraint and actuator failures’, IEEE Trans. Syst. Man Cybern., Syst., 2019, pp. 112, DOI: 10.1109/TSMC.2019.2895858.
    51. 51)
      • 43. He, W., Yan, Z.C., Sun, Y.K., et al: ‘Neural-learning-based control for a constrained robotic manipulator with flexible joints’, IEEE Trans. Neural Netw. Learn. Syst., 2018, 29, (12), pp. 59936003.
    52. 52)
      • 58. Perez-Arancibia, N.O., Tsao, T.C., Gibson, J.S.: ‘Saturation-induced instability and its avoidance in adaptive control of hard disk drives’, IEEE Trans. Control Syst. Technol., 2010, 18, (2), pp. 368382.
    53. 53)
      • 16. Jiang, Z.P.: ‘Decentralized and adaptive nonlinear tracking of large-scale systems via output feedback’, IEEE Trans. Autom. Control, 2000, 45, (11), pp. 21222128.
    54. 54)
      • 48. He, W., Huang, B., Dong, Y.T., et al: ‘Adaptive neural network control for robotic manipulators with unknown deadzone’, IEEE Trans. Cybern., 2018, 48, (9), pp. 26702682.
    55. 55)
      • 40. Aghababa, M.P.: ‘Sliding-mode control composite with disturbance observer for tracking control of mismatched uncertain nDOF nonlinear systems’, IEEE/ASME Trans. Mechatronics, 2018, 23, (1), pp. 482490.
    56. 56)
      • 7. Xie, X.J., Duan, N., Zhao, C.R.: ‘A combined homogeneous domination and sign function approach to output-feedback stabilization of stochastic high-order nonlinear systems’, IEEE Trans. Autom. Control, 2014, 59, (5), pp. 13031309.
    57. 57)
      • 46. Liu, Y.J., Tong, S.C.: ‘Adaptive NN tracking control of uncertain nonlinear discrete-time systems with nonaffine dead-zone input’, IEEE Trans. Cybern., 2015, 45, (3), pp. 497505.
    58. 58)
      • 1. Khalil, H.K.: ‘Nonlinear systems’ (Prentice-Hall, New Jersey, 2002, 3rd edn).
    59. 59)
      • 38. Gao, Y., Cai, G., Yang, X., et al: ‘Improved tentacle-based guidance for reentry gliding hypersonic vehicle with no-fly zone constraint’, IEEE Access, 2019, 7, pp. 119246119258.
    60. 60)
      • 3. Ge, S.S., Hang, C.C., Lee, T.H., et al: ‘Stable adaptive neural network control’ (Kluwer, USA, 2001).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.0283
Loading

Related content

content/journals/10.1049/iet-cta.2019.0283
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading