access icon free Stabilisation of event-triggered-based neural network control system and its application to wind power generation systems

This study addresses the event-triggered (ET)-based stabilisation problem of neural-network-based control system (NNBCS) and illustrates the direct application to wind power generation system. In this regard, the novel ET-based controller algorithm is designed for NNBCS instead of sampled data controller (sampling will be initiated at a fixed rate regardless whether it is required or not) which reduces the computation complexity by avoiding the unnecessary details over the transmission. The novel stability and stabilisation conditions are expressed in terms of linear matrix inequalities that are derived through constructing the time-dependent Lyapunov functional candidate. For deepening the knowledge in the outcomes of the proposed conditions, the study numerically evaluates the dynamic models such as variable-speed wind turbine drive system, permanent magnet synchronous motors model and traditional inverted pendulum model and validates the effectiveness of the proposed controller scheme. Finally, a comparison result shows the superiority of the derived conditions.

Inspec keywords: control system synthesis; sampled data systems; neurocontrollers; Lyapunov methods; linear matrix inequalities; nonlinear control systems; synchronous motors; wind power plants; machine control; power system stability; pendulums; wind turbines; stability

Other keywords: NNBCS; neural-network-based control system; controller algorithm; time-dependent Lyapunov functional; power generation system; variable-speed wind turbine drive system; sampled data controller; event-triggered-based stabilisation problem; event-triggered-based neural network control system

Subjects: Discrete control systems; Stability in control theory; Algebra; Control of electric power systems; Neurocontrol; Algebra, set theory, and graph theory; Algebra; Wind power plants; Nonlinear control systems; Wind energy; Control system analysis and synthesis methods; Synchronous machines

References

    1. 1)
      • 10. Li, Y.-X., Yang, G.-H.: ‘Adaptive neural control of pure-feedback nonlinear systems with event-triggered communications’, IEEE Trans. Neural Netw. Learn. Syst., 2018, 29, (12), pp. 62426251.
    2. 2)
      • 15. Åström, K.J., Wittenmark, B.: ‘Computer-controlled systems: theory and design’ (Courier Corporation, New York, USA, 2013).
    3. 3)
      • 29. Novak, P., Ekelund, T., Jovik, I., et al: ‘Modeling and control of variable-speed wind-turbine drive-system dynamics’, IEEE Control Syst., 1995, 15, (4), pp. 2838.
    4. 4)
      • 18. Li, Q., Shen, B., Wang, Z., et al: ‘Synchronization control for a class of discrete time-delay complex dynamical networks: a dynamic event-triggered approach’, IEEE Trans. Cybern., 2019, 49, (5), pp. 19791986.
    5. 5)
      • 35. Chen, Q., Ren, X., Na, J.: ‘Robust finite-time chaos synchronization of uncertain permanent magnet synchronous motors’, ISA Trans., 2015, 58, pp. 262269.
    6. 6)
      • 17. Ding, L., Han, Q.-L., Ge, X., et al: ‘An overview of recent advances in event-triggered consensus of multiagent systems’, IEEE Trans. Cybern., 2018, 48, (4), pp. 11101123.
    7. 7)
      • 31. Thuan, M.V., Phat, V.N.: ‘Optimal guaranteed cost control of linear systems with mixed interval time-varying delayed state and control’, J. Optim. Theory Appl., 2012, 152, (2), pp. 394412.
    8. 8)
      • 8. Gnaneswaran, N., Joo, Y.H.: ‘Event-triggered stabilization for T-S fuzzy systems with asynchronous premise constraints and its application to wind turbine system’, IET Control Theory Applic., 2019, 13, (10), pp. 15321542.
    9. 9)
      • 9. Wang, T., Gao, H., Qiu, J.: ‘A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (2), pp. 416425.
    10. 10)
      • 27. Shen, H., Li, F., Yan, H., et al: ‘Finite-time event-triggered H control for T-S fuzzy markov jump systems’, IEEE Trans. Fuzzy Syst., 2018, 26, (5), pp. 31223135.
    11. 11)
      • 22. Peng, C., Yang, T.C.: ‘Event-triggered communication and H control co-design for networked control systems’, Automatica, 2013, 49, (5), pp. 13261332.
    12. 12)
      • 19. Wang, X.L., Yang, G.H.: ‘Event-triggered H filtering for discrete-time T–S fuzzy systems via network delay optimization technique’, IEEE Trans. Syst. Man Cybern., Syst., 2019, 49, (10), pp. 20262035.
    13. 13)
      • 30. Sung, H.C., Park, J.B., Joo, Y.H.: ‘Robust observer-based fuzzy control for variable speed wind power system: LMI approach’, Int. J. Control Autom. Syst., 2011, 9, (6), pp. 11031110.
    14. 14)
      • 32. Li, Z., Park, J.B., Joo, Y.H., et al: ‘Bifurcations and chaos in a permanent-magnet synchronous motor’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2002, 49, (3), pp. 383387.
    15. 15)
      • 5. Yang, B., Yu, T., Shu, H., et al: ‘Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers’, Appl. Energy, 2018, 210, pp. 711723.
    16. 16)
      • 4. Kamal, E., Aitouche, A., Ghorbani, R., et al: ‘Robust nonlinear control of wind energy conversion systems’, Int. J. Electr. Power Energy Syst., 2013, 44, (1), pp. 202209.
    17. 17)
      • 28. Hu, S., Yue, D., Xie, X., et al: ‘Stabilization of neural-network-based control systems via event-triggered control with nonperiodic sampled data’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 29, (3), pp. 573585.
    18. 18)
      • 25. Yu, H., Hao, F.: ‘Design of event conditions in event-triggered control systems: a non-fragile control system approach’, IET Control Theory Applic., 2016, 10, (9), pp. 10691077.
    19. 19)
      • 21. Peng, C., Ma, S., Xie, X.: ‘Observer-based non-PDC control for networked T–S fuzzy systems with an event-triggered communication’, IEEE Trans. Cybern., 2017, 47, (8), pp. 22792287.
    20. 20)
      • 11. Lam, H., Leung, F.H.: ‘Design and stabilization of sampled-data neural-network-based control systems’, IEEE Trans. Syst. Man Cybern., B, Cybern., 2006, 36, (5), pp. 9951005.
    21. 21)
      • 16. Chen, T., Francis, B.A.: ‘Optimal sampled-data control systems’ (Springer Science & Business Media, London, 2012).
    22. 22)
      • 26. Tarbouriech, S., Seuret, A., da Silva, J.M.G.Jr., et al: ‘Observer-based event-triggered control co-design for linear systems’, IET Control Theory Applic., 2016, 10, (18), pp. 24662473.
    23. 23)
    24. 24)
      • 23. Li, H., Chen, Z., Wu, L., et al: ‘Event-triggered fault detection of nonlinear networked systems’, IEEE Trans. Cybern., 2017, 47, (4), pp. 10411052.
    25. 25)
      • 34. Zhang, F., Liao, X., Mu, C.: ‘Dynamical analysis of the permanent-magnet synchronous motor chaotic system’, Adv. Differ. Equ., 2017, 2017, (1), p. 76.
    26. 26)
      • 12. Zhu, X.-L., Wang, Y.: ‘Stabilization for sampled-data neural-network-based control systems’, IEEE Trans. Syst. Man Cybern., B, Cybern., 2011, 41, (1), pp. 210221.
    27. 27)
      • 20. Yue, D., Tian, E., Han, Q.-L.: ‘A delay system method for designing event-triggered controllers of networked control systems’, IEEE Trans. Autom. Control, 2013, 58, (2), pp. 475481.
    28. 28)
      • 7. Schulte, H., Gauterin, E.: ‘Fault-tolerant control of wind turbines with hydrostatic transmission using Takagi–Sugeno and sliding mode techniques’, Annual Rev. Control, 2015, 40, pp. 8292.
    29. 29)
      • 6. Schulte, H., Gauterin, E.: ‘Input-to-state stability condition for passive fault-tolerant control of wave and wind energy converters’, IFAC-PapersOnLine, 2015, 48, (21), pp. 257262.
    30. 30)
      • 33. Jing, Z., Yu, C., Chen, G.: ‘Complex dynamics in a permanent-magnet synchronous motor model’, Chaos, Solitons & Fractals, 2004, 22, (4), pp. 831848.
    31. 31)
      • 24. Meng, X., Chen, T.: ‘Event triggered robust filter design for discrete-time systems’, IET Control Theory Applic., 2014, 8, (2), pp. 104113.
    32. 32)
      • 37. Mani, P., Rajan, R., Shanmugam, L., et al: ‘Adaptive fractional fuzzy integral sliding mode control for PMSM model’, IEEE Trans. Fuzzy Syst., 2019, 27, (8), pp. 16741686.
    33. 33)
      • 3. Baloch, M.H., Wang, J., Kaloi, G.S.: ‘Stability and nonlinear controller analysis of wind energy conversion system with random wind speed’, Int. J. Electr. Power Energy Syst., 2016, 79, pp. 7583.
    34. 34)
      • 1. Bianchi, F.D., Mantz, R.J., De Battista, H.: ‘The wind and wind turbines’, ‘Wind Turbine Control Systems: Principles, modelling and gain scheduling design’ (Springer, 2007), pp. 728.
    35. 35)
      • 2. Kazachkov, Y., Feltes, J.W., Zavadil, R.: ‘Modeling wind farms for power system stability studies’. Power Engineering Society General Meeting, Toronto, Ontario, Canada, 2003, vol. 3, pp. 15261533.
    36. 36)
      • 13. Wu, Z.-G., Shi, P., Su, H., et al: ‘Exponential stabilization for sampled-data neural-network-based control systems’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (12), pp. 21802190.
    37. 37)
      • 14. Wang, Y., Shen, H., Duan, D.: ‘On stabilization of quantized sampled-data neural-network-based control systems’, IEEE Trans. Cybern., 2017, 47, (10), pp. 31243135.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.0246
Loading

Related content

content/journals/10.1049/iet-cta.2019.0246
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading