Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Distributed optimisation design for solving the Stein equation with constraints

In this study, the authors consider distributed computation of the Stein equations with set constraints, where each agent or node knows a few rows or columns of coefficient matrices. By formulating an equivalent distributed optimisation problem, they propose a projection-based algorithm to seek least-squares solutions to the constrained Stein equation over a multi-agent system network. Then, they rigorously prove the convergence of the proposed algorithm to a least-squares solution for any initial condition, and moreover, provide a simplified distributed algorithm with an exponential convergence rate for the case without constraints.

References

    1. 1)
      • 5. Kia, S.S., Cortés, J., Martínez, S.: ‘Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication’, Automatica, 2015, 55, pp. 254264.
    2. 2)
      • 27. Anderson, B., Mou, S., Morse, A.S., et al: ‘Decentralized gradient algorithm for solution of a linear equation’, 2015, arXiv preprint arXiv:150904538.
    3. 3)
      • 36. Ruszczyński, A.P., Ruszczynski, A.: ‘Nonlinear optimization’, vol. 13 (Princeton University Press, Princeton, 2006).
    4. 4)
      • 16. Barbour, A., Utev, S.: ‘Solving the Stein equation in compound Poisson approximation’, Adv. Appl. Probab., 1998, 30, (2), pp. 449475.
    5. 5)
      • 1. Nedic, A., Ozdaglar, A., Parrilo, P.A.: ‘Constrained consensus and optimization in multi-agent networks’, IEEE Trans. Autom. Control, 2010, 55, (4), pp. 922938.
    6. 6)
      • 4. Li, L., Ho, D.W., Xu, S.: ‘A distributed event-triggered scheme for discrete-time multi-agent consensus with communication delays’, IET Control Theory Applic., 2014, 8, (10), pp. 830837.
    7. 7)
      • 25. Sadkane, M.: ‘A low-rank Krylov squared Smith method for large-scale discrete-time Lyapunov equations’, Linear Algebr. Appl., 2012, 436, (8), pp. 28072827.
    8. 8)
      • 19. He, Z.H., Wang, Q.W., Zhang, Y.: ‘A system of quaternary coupled Sylvester-type real quaternion matrix equations’, Automatica, 2018, 87, pp. 2531.
    9. 9)
      • 9. Wachspress, E.L.: ‘Iterative solution of the Lyapunov matrix equation’, Appl. Math. Lett., 1988, 1, (1), pp. 8790.
    10. 10)
      • 20. Barraud, A.: ‘A numerical algorithm to solve ATXAX=Q’, IEEE Trans. Autom. Control, 1977, 22, (5), pp. 883885.
    11. 11)
      • 18. Jiang, T.S., Wei, M.S.: ‘On a solution of the quaternion matrix equation XAX~B=C and its application’, Acta Math. Sin., 2005, 21, (3), pp. 483490.
    12. 12)
      • 35. De Gennaro, M.C., Jadbabaie, A: ‘Decentralized control of connectivity for multi-agent systems’. 2006 45th IEEE Conf. on Decision and Control, San Diego, USA, 2006, pp. 36283633.
    13. 13)
      • 21. Hammarling, S.: ‘Numerical solution of the discrete-time, convergent, non-negative definite Lyapunov equation’, Syst. Control Lett., 1991, 17, (2), pp. 137139.
    14. 14)
      • 28. Liu, J., Morse, A.S., Nedić, A., et al: ‘Exponential convergence of a distributed algorithm for solving linear algebraic equations’, Automatica, 2017, 83, pp. 3746.
    15. 15)
      • 38. Haddad, W.M., Chellaboina, V.: ‘Nonlinear dynamical systems and control: a Lyapunov-based approach’ (Princeton University Press, Princeton, 2011).
    16. 16)
      • 23. Barnett, S.: ‘Simplification of the Lyapunov matrix equation ATPAP=Q’, IEEE Trans. Autom. Control, 1974, 19, (4), pp. 446447.
    17. 17)
      • 17. Hu, G.D., Zhu, Q.: ‘Bounds of modulus of eigenvalues based on Stein equation’, Kybernetika, 2010, 46, (4), pp. 655664.
    18. 18)
      • 12. Antoulas, A.C.: ‘Approximation of large-scale dynamical systems’, vol. 6 (SIAM, Philadelphia, 2005).
    19. 19)
      • 8. Bartels, R.H., Stewart, G.W.: ‘Solution of the matrix equation AX+XB=C’, Commun. ACM, 1972, 15, (9), pp. 820826.
    20. 20)
      • 11. Cai, G.B., Hu, C.H.: ‘Solving periodic Lyapunov matrix equations via finite steps iteration’, IET Control Theory Applic., 2012, 6, (13), pp. 21112119.
    21. 21)
      • 6. Deng, Z., Wang, X., Hong, Y.: ‘Distributed optimisation design with triggers for disturbed continuous-time multi-agent systems’, IET Control Theory Applic., 2016, 11, (2), pp. 282290.
    22. 22)
      • 3. Su, H., Chen, M.Z.: ‘Multi-agent containment control with input saturation on switching topologies’, IET Control Theory Applic., 2015, 9, (3), pp. 399409.
    23. 23)
      • 10. Hajarian, M.: ‘Matrix GPBiCG algorithms for solving the general coupled matrix equations’, IET Control Theory Applic., 2014, 9, (1), pp. 7481.
    24. 24)
      • 24. Smith, R.: ‘Matrix equation XA+BX=C’, SIAM J. Appl. Math., 1968, 16, (1), pp. 198201.
    25. 25)
      • 30. Cao, K., Zeng, X., Hong, Y: ‘Continuous-time distributed algorithms for solving linear algebraic equation’. 2017 36th Chinese Control Conf. (CCC), Dalian, China, 2017, pp. 80688073.
    26. 26)
      • 7. Wang, X., Hong, Y., Ji, H.: ‘Distributed optimization for a class of nonlinear multi-agent systems with disturbance rejection’, IEEE Trans. Cybern., 2016, 46, (7), pp. 16551666.
    27. 27)
      • 26. Mou, S., Liu, J., Morse, A.S.: ‘A distributed algorithm for solving a linear algebraic equation’, IEEE Trans. Autom. Control, 2015, 60, (11), pp. 28632878.
    28. 28)
      • 15. Klein, A., Spreij, P.: ‘On Stein's equation, Vandermonde matrices and Fisher's information matrix of time series processes. Part I: the autoregressive moving average process’, Linear Algebr. Appl., 2001, 329, (1–3), pp. 947.
    29. 29)
      • 2. Zeng, X., Yi, P., Hong, Y.: ‘Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach’, IEEE Trans. Autom. Control, 2017, 62, (10), pp. 52275233.
    30. 30)
      • 39. Hui, Q., Haddad, W.M., Bhat, S.P.: ‘Semistability, finite-time stability, differential inclusions, and discontinuous dynamical systems having a continuum of equilibria’, IEEE Trans. Autom. Control, 2009, 54, (10), pp. 24652470.
    31. 31)
      • 29. Liu, J., Mou, S., Morse, A.S.: ‘Asynchronous distributed algorithms for solving linear algebraic equations’, IEEE Trans. Autom. Control, 2018, 63, (2), pp. 372385.
    32. 32)
      • 34. Charalambous, T., Rabbat, M.G., Johansson, M., et al: ‘Distributed finite-time computation of digraph parameters: left-eigenvector, out-degree and spectrum’, IEEE Trans. Control Netw. Syst., 2016, 3, (2), pp. 137148.
    33. 33)
      • 33. Kinderlehrer, D., Stampacchia, G.: ‘An introduction to variational inequalities and their applications’, vol. 31 (SIAM, Philadelphia, 1980).
    34. 34)
      • 22. Popov, V.: ‘Hyperstability and optimality of automatic systems with several control functions’, Rev. Roum. Sci. Techn., Ser. Electrotechn. Energ., 1964, 9, (4), pp. 629690.
    35. 35)
      • 14. Zhou, B., Lam, J., Duan, G.R.: ‘Toward solution of matrix equation X=Af(X)B+C’, Linear Algebr. Appl., 2011, 435, (6), pp. 13701398.
    36. 36)
      • 13. Silva, F.C., Simões, R.: ‘On the Lyapunov and Stein equations’, Linear Algebr. Appl., 2007, 420, (2–3), pp. 329338.
    37. 37)
      • 37. Strang, G.: ‘The fundamental theorem of linear algebra’, Am. Math. Mon., 1993, 100, (9), pp. 848855.
    38. 38)
      • 32. Godsil, C., Royle, G: ‘Strongly regular graphs’ in Algebraic graph theory’ (Springer, New York, 2001), pp. 217247.
    39. 39)
      • 31. Zeng, X., Liang, S., Hong, Y., et al: ‘Distributed computation of linear matrix equations: an optimization perspective’, IEEE Trans. Autom. Control, 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.0140
Loading

Related content

content/journals/10.1049/iet-cta.2019.0140
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address