Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Spectral perspective on stability and stabilisation of continuous-time mean-field stochastic systems

This mainly studies the mean square stabilisability, interval stability and stabilisation of mean-field stochastic control systems. A necessary and sufficient condition for stabilisation of continuous-time mean-field stochastic systems is presented via operator spectrum technique. The unremovable spectrum is generalised to mean-field stochastic differential equations (MF-SDEs), and a necessary and sufficient condition for unremovable spectrum is obtained. Three operators defined in different domains are given to characterise the stabilisability of MF-SDEs. As applications, an example is given to illustrate their relationships. Interval stability and stabilisation are generalised to MF-SDEs, and a necessary condition for interval stability is given to show the relationship among interval stability, the decay rate of the system state response and the Lyapunov exponent. A sufficient condition for interval stabilisation is proposed via linear matrix inequality approach.

References

    1. 1)
      • 13. Ma, H., Liu, B.: ‘Infinite horizon optimal control problem of mean-field backward stochastic delay differential equation under partial information’, Eur. J. Control, 2017, 36, pp. 4350.
    2. 2)
      • 17. Lin, X., Zhang, R.: ‘H control for stochastic systems with poisson jumps’, J. Syst. Sci. Complex., 2011, 24, pp. 683700.
    3. 3)
      • 10. Huang, J.H., Li, X., Yong, J.M.: ‘A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon’, Math. Control Relat. F., 2015, 5, pp. 97139.
    4. 4)
      • 11. Ni, Y., Li, X., Zhang, J.: ‘Indefinite mean-field stochastic linear-quadratic optimal control: from finite horizon to infinite horizon’, IEEE Trans. Autom. Control, 2016, 61, pp. 32693284.
    5. 5)
      • 25. Chen, G., Xia, J., Zhuang, G.: ‘Delay-dependent stability and dissipativity analysis of generalized neural networks with Markovian jump parameters and two delay components’, J. Frankl. Inst., 2016, 353, pp. 21372158.
    6. 6)
      • 12. Wang, G., Xiao, H., Xing, G.: ‘An optimal control problem for mean-field forward-backward stochastic differential equation with noisy observation’, Automatica, 2017, 86, pp. 104109.
    7. 7)
      • 9. Yong, J.M.: ‘A linear-quadratic optimal control problem for mean-field stochastic differential equations’, SIAM J. Control Optim., 2013, 51, pp. 28092838.
    8. 8)
      • 4. Zheng, Y., Chen, W., Wang, L.: ‘Finite-time consensus for stochastic multi-agent systems’, Int. J. Control, 2011, 84, pp. 16441652.
    9. 9)
      • 5. Zheng, Y., Ma, J., Wang, L.: ‘Consensus of hybrid multi-agent systems’, IEEE Trans. Neural Netw. Learn. Syst., 2018, 29, pp. 13591365.
    10. 10)
      • 27. Wang, B., Zhu, Q.: ‘Stability analysis of Markov switched stochastic differential equations with both stable and unstable subsystems’, Syst. Control Lett., 2017, 105, pp. 5561.
    11. 11)
      • 22. Zhang, W.H., Xie, L.H.: ‘Interval stability and stabilization of linear stochastic systems’, IEEE Trans. Autom. Control, 2009, 54, pp. 810815.
    12. 12)
      • 19. Kushner, H.J.: ‘Stochastic stability and control’ (Academic Press, New York, 1967).
    13. 13)
      • 7. Li, G., Chen, M.: ‘Infinite horizon linear quadratic optimal control for stochastic difference time-delay systems’, Adv. Differ. Equ., 2015, 2015, p. 112.
    14. 14)
      • 14. Ma, L., Zhang, T., Zhang, W., et al: ‘Finite horizon mean-field stochastic H2/H control for continuous-time systems with (x,ν)-dependent noise’, J. Frankl. Inst., 2015, 352, pp. 53935414.
    15. 15)
      • 2. Ahdersson, D., Djehiche, B.: ‘A maximum principle for SDEs of mean-field type’, Appl. Math. Opt., 2011, 63, pp. 341356.
    16. 16)
      • 6. Liu, X., Li, Y., Zhang, W.: ‘Stochastic linear quadratic optimal control with constraint for discrete-time systems’, Appl. Math. Comput., 2014, 228, pp. 264270.
    17. 17)
      • 23. Zhu, S., Sun, K., Chang, W., et al: ‘Stochastic suppression and stabilization of nonlinear hybrid delay systems with general one-sided polynomial growth condition and decay rate’, IET Control Theory Appl., 2018, 12, pp. 933941.
    18. 18)
      • 16. Hinrichsen, D., Pritchard, A.J.: ‘Stochastic H’, SIAM J. Control Optim., 1998, 36, pp. 15041538.
    19. 19)
      • 28. Wang, B., Zhu, Q.: ‘Stability analysis of semi-Markov switched stochastic systems’, Automatica, 2018, 94, pp. 7280.
    20. 20)
      • 24. Zhu, S., Shi, P, Lim, C.: ‘Chew new criteria for stochastic suppression and stabilization of hybrid functional differential systems’, Int. J. Robust Nonlinear Control, 2018, 28, pp. 39463958.
    21. 21)
      • 1. McKean, H.P.: ‘A class of Markov processes associated with nonlinear parabolic equations’, Proc. Natl. Acad. Sci. USA, 1966, 56, pp. 19071911.
    22. 22)
      • 21. Zhang, W.H., Chen, B.S.: ‘On stabilizability and exact observability of stochastic systems with their applications’, Automatica, 2004, 40, pp. 8794.
    23. 23)
      • 30. Ma, H.J., Jia, Y.M.: ‘Stability analysis for stochastic differential equations with infinite Markovian switchings’, J. Math. Anal. Appl., 2016, 435, pp. 593605.
    24. 24)
      • 20. Ait Rami, M., Zhou, X.Y.: ‘Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic control’, IEEE Trans. Autom. Control, 2000, 45, pp. 11311143.
    25. 25)
      • 29. Zhao, Y., Zhang, W.H.: ‘Observer-based controller design for singular stochastic Markov jump systems with state dependent noise’, J. Syst. Sci. Complex., 2016, 29, pp. 946958.
    26. 26)
      • 15. Lasry, J.M., Lions, P.L.: ‘Mean-field games’, Jpn. J. Math., 2007, 2, pp. 229260.
    27. 27)
      • 26. Zhu, Q., Wang, H.: ‘Output feedback stabilization of stochastic feedforward systems with unknown control coefficients and unknown output function’, Automatica, 2018, 87, pp. 166175.4.
    28. 28)
      • 8. Xia, J., Chen, G., Sun, W.: ‘Extended dissipative analysis of generalized Markovian switching neural networks with two delay components’, Neurocomputing, 2017, 260, pp. 275283.
    29. 29)
      • 18. Zhang, W.H., Ma, L.M., Zhang, T.L.: ‘Discrete-time mean-field stochastic H2/H control’, J. Syst. Sci. Complex., 2017, 30, pp. 765781.
    30. 30)
      • 3. Li, J.: ‘Stochastic maximum principle in the mean-field controls’, Automatica, 2012, 48, pp. 366373.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.0072
Loading

Related content

content/journals/10.1049/iet-cta.2019.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address