Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Data-driven-based event-triggered tracking control for non-linear systems with unknown disturbance

A novel event-triggered model-free adaptive tracking control problem is studied for non-linear systems with unknown bounded disturbance. A general dynamic linearisation model framework with disturbance input is developed and event-triggered-based model-free adaptive control algorithm is designed by using pseudo-partial derivatives method and input/output measurement data. Owing to the existence of unknown disturbance, a disturbance estimator is designed based on the optimisation criterion technique. Then, a new event-triggering mechanism with dead-zone operator is designed to improve the utility of network communication resources without Zeno phenomenon. Then, an observer-based controller with disturbance compensation is developed, such that the tracking error between the system output and desired output signal converges to a small residual set around the origin. Finally, two simulation examples are provided to show the effectiveness and practicability of the proposed approach.

References

    1. 1)
      • 1. Wei, Q., Liu, D., Lin, H.: ‘Value iteration adaptive dynamic programming for optimal control of discrete-time nonlinear systems’, IEEE Trans. Cybern., 2016, 46, (3), pp. 840853.
    2. 2)
      • 3. Gao, H., Chen, T., Lam, J.: ‘A new delay system approach to network-based control’, Automatica, 2008, 44, (1), pp. 3952.
    3. 3)
      • 4. Zhang, H., Lewis, F.L.: ‘Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics’, Automatica, 2012, 48, (7), pp. 14321439.
    4. 4)
      • 12. Hou, Z., Zhu, Y.: ‘Controller-dynamic-linearization-based model free adaptive control for discrete-time nonlinear systems’, IEEE Trans. Ind. Inf., 2013, 9, (4), pp. 23012309.
    5. 5)
      • 16. Liu, D., Yang, G.-H.: ‘Performance-based data-driven model-free adaptive sling mode control for a class of discrete-time nonlinear processes’, J. Process Control, 2018, 68, pp. 186194.
    6. 6)
      • 20. Ding, D., Wang, Z., Wei, G., et al: ‘Event-based security control for discrete-time stochastic systems’, IET Control Theory Applic., 2016, 10, (15), pp. 18081815.
    7. 7)
      • 17. Chi, R., Liu, X., Zhang, R., et al: ‘Constrained data-driven optimal iterative learning control’, J. Process Control, 2017, 55, pp. 1029.
    8. 8)
      • 14. Xu, D., Jiang, B., Shi, P.: ‘A novel model-free adaptive control design for multivariable industrial processes’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 63916398.
    9. 9)
      • 13. Xu, D., Liu, F., Jiang, B.: ‘Improved data driven model free adaptive constrained control for a solid oxide fuel cell’, IET Control Theory Applic., 2016, 10, (12), pp. 14121419.
    10. 10)
      • 7. Hou, Z., Chi, R., Gao, H.: ‘An overview of dynamic-linearization-based data-driven control and applications’, IEEE Trans. Ind. Electr., 2017, 64, (5), pp. 40764090.
    11. 11)
      • 10. Hou, Z., Jin, S.: ‘Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems’, IEEE Trans. Neural Netw. Learn. Syst., 2011, 22, (12), pp. 21732188.
    12. 12)
      • 27. Wang, N., Xie, G.M., Pan, X.X., et al: ‘Full-state regulation control of asymmetric underactuated surface vehicles’, IEEE Trans. Ind. Electr., 2018, DOI 10.1109/TIE.2018.2890500.
    13. 13)
      • 19. Wang, Y., Zheng, W., Zhang, H.: ‘Dynamic event-based control of nonlinear stochastic systems’, IEEE Trans. Autom. Control, 2017, 62, (12), pp. 65446551.
    14. 14)
      • 22. Liu, D., Yang, G.-H.: ‘Event-based model-free adaptive control for discrete-time non-linear processes’, IET Control Theory Applic., 2017, 11, (15), pp. 25312538.
    15. 15)
      • 26. Wang, Y.C., Wang, R., Xie, X.P., et al: ‘Observer-based H fuzzy control for modified repetitive control systems’, Neurocomputing, 2018, 2, (86), pp. 141149.
    16. 16)
      • 18. Seto, D.B., Lehoczky, J.P., Sha, L., et al: ‘On task schedulability in real-time control systems’. 1996 17th IEEE Real-Time Syst. Symp., Washington DC, USA, 1996, pp. 1321.
    17. 17)
      • 5. He, S., Song, J., Ding, Z.T.: ‘Online adaptive optimal control for continuous-time Markov jump linear systems using a novel policy iteration algorithm’, IET Control Theory Applic., 2015, 9, (10), pp. 15361543.
    18. 18)
      • 24. Li, H., Wang, L., Du, H., et al: ‘Adaptive fuzzy backstepping tracking control for strict-feedback systems with input delay’, IEEE Trans. Fuzzy Syst., 2017, 25, (3), pp. 642652.
    19. 19)
      • 6. Vamvoudakis, K.G.: ‘Event-triggered optimal adaptive control algorithm for continuous-time nonlinear systems’, IEEE/CAA J. Autom. Sin., 2014, 1, (3), pp. 282293.
    20. 20)
      • 28. Wang, N., Su, S.F., Pan, X.X., et al: ‘Yaw-guided trajectory tracking control of an asymmetric underactuated surface vehicle’, IEEE Trans. Ind. Inf., 2018, DOI 10.1109/TII.2018.2877046.
    21. 21)
      • 23. Liu, D., Yang, G.-H.: ‘Neural network-based event-triggered MFAC for nonlinear discrete-time processes’, Neurocomputing, 2018, 272, pp. 356364.
    22. 22)
      • 30. Bu, X.H., Hou, Z.S., Yu, F.S., et al: ‘Model free adaptive control with disturbance observer’, Control Eng. Appl. Inf., 2012, 4, pp. 4249.
    23. 23)
      • 21. Wang, Y., Zheng, L., Zhang, H., et al: ‘Event-triggered fault detection filter design for nonlinear networked systems via fuzzy lyapunov functions’, J. Franklin Inst., 2018, 355, pp. 83928411.
    24. 24)
      • 25. Wang, N., Sun, Z., Yin, J.C., et al: ‘Fuzzy unknown observer-based robust adaptive path following control of underactuated surface vehicles subject to multiple unknowns’, Ocean Eng., 2019, 176, pp. 5764.
    25. 25)
      • 2. Wang, Y., Zhang, H., Wang, X., et al: ‘Networked synchronization control of coupled dynamic networks with time-varying delay’, IEEE Trans. Syst. Man Cybern. B Cybern., 2010, 40, (6), pp. 14681479.
    26. 26)
      • 9. Hou, Z.S.: ‘The parameter idetification, adaptive control for nonlinear system’. PhD thesis, Northeastern University, 1994.
    27. 27)
      • 31. Eskinat, E., Johnson, S.H., Luyben, W.L.: ‘Use of Hammerstein models in identification of nonlinear systems’, AIChE J., 1991, 37, (2), pp. 255268.
    28. 28)
      • 8. Wang, J.-S., Yang, G.-H.: ‘Data-driven output-feedback fault-tolerant control for unknown dynamic systems with faults changing system dynamics’, J. Process Control, 2016, 43, pp. 1023.
    29. 29)
      • 11. Bu, X., Hou, Z., Zhang, H.: ‘Data-driven multiagent systems consensus tracking using model free adaptive control’, IEEE Trans. Neural Netw. Learn. Syst., 2018, 29, (5), pp. 15141524.
    30. 30)
      • 29. Li, S., Yang, J.: ‘Robust autopilot design for bank-to-turn missiles using disturbance observers’, IEEE Trans. Aerosp. Electron. Syst., 2013, 49, (1), pp. 558579.
    31. 31)
      • 15. Zhu, Y., Hou, Z.: ‘Data-driven MFAC for a class of discrete-time nonlinear systems with RBFNN’, IEEE Trans. Neural Learn. Syst., 2014, 25, pp. 10131020.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.0051
Loading

Related content

content/journals/10.1049/iet-cta.2019.0051
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address