access icon free Composite model reference adaptive sliding mode controller for automatic train operation

With the ever-increasing speed of trains, the passenger comfort, and the desired trajectory tracking play an important role in the design of automatic train operation. As the speed increases, the train experiences uncertainties, non-linearities, unknown disturbances and so on, due to the interaction among track-environment-disturbance-longitudinal train dynamics. Much attention has been drawn to design a suitable control scheme which can improve both longitudinal dynamic performance and operational robustness in view of automatic train operation. In this context, the authors propose a novel composite sliding mode control scheme with model reference adaptation scheme. The sliding surface of the composite control scheme is considered as a two-layer sliding surface to emulate the coupled vehicle dynamics. To derive the adaptive controller gains mathematically, the model reference adaptation framework is chosen that also helps to demonstrate the stability and the convergence using Lyapunov criterion. The effectiveness of the proposed composite algorithm is being tested by tracking a linear time-invariant stable reference model in the simulation under different environmental disturbances such as side wind, wet rail and model parameter uncertainties. The proposed scheme is found to improve passenger comfort with a least tracking error.

Inspec keywords: Lyapunov methods; uncertain systems; stability; railways; model reference adaptive control systems; variable structure systems; vehicle dynamics

Other keywords: track-environment-disturbance-longitudinal train dynamics; coupled vehicle dynamics; two-layer sliding surface; composite model reference; reference adaptive sliding mode controller; linear time-invariant stable reference model; longitudinal dynamic performance; adaptive controller gains; desired trajectory tracking; convergence; model reference adaptation framework; operational robustness; composite control scheme; passenger comfort; model parameter uncertainties; Lyapunov criterion; wet rail; stability; automatic train operation

Subjects: Rail-traffic system control; Multivariable control systems; Self-adjusting control systems; Vehicle mechanics; Stability in control theory

References

    1. 1)
      • 25. Kreutzer, U., Gerling, D., Schwara, J.: ‘A model reference based sliding mode approach for parameter varying systems’, Int. Wissenschaftliches Kolloquium, 2010, 55, pp. 452457.
    2. 2)
      • 33. Ioannou, P.A., Sun, J.: ‘Robust adaptive control’ (Prentice-Hall, New York, 1996).
    3. 3)
      • 18. Murat, K., Poyraz, G.: ‘Robust adaptive control of pulse-width modulated rectifiers based on adaptive super-twisting sliding-mode and state feedback controllers’, Electr. Power Compon. Syst., 2015, 43, (11), pp. 12891296.
    4. 4)
      • 9. Levant, A.: ‘Higher-order sliding modes, differentiation and output-feedback control’, Int. J. Control, 2003, 76, (9-10), pp. 924941.
    5. 5)
      • 19. Mondal, S., Mahanta, C.: ‘Adaptive second-order sliding mode controller for a twin rotor multi-input – multi-output system’, IET Control Theory Applic., 2012, 6, (14), pp. 21572167.
    6. 6)
      • 2. Ganesan, M., Ezhilarasi, D., Benni, J.: ‘Second-order sliding mode controller with model reference adaptation for automatic train operation’, Veh. Syst. Dyn., 2017, 55, (11), pp. 17641786.
    7. 7)
      • 11. Bartolini, G., Pisano, A., Elisabetta, P.: ‘A survey of applications of second-order sliding mode control to mechanical systems’, Int. J. Control, 2003, 76, (9-10), pp. 875892.
    8. 8)
      • 31. Davila, A., Moreno, J.A., Fridman, L.: ‘Optimal Lyapunov function selection for reaching time estimation of super twisting algorithm’. Proceeding of 48 h IEEE Conf. Decision Control held jointly with 2009 28th Chinese Control Conf., Shanghai, 2009, pp. 84058410.
    9. 9)
      • 22. Taleb, M., Plestan, F., Bououlid, B.: ‘High order integral sliding mode control with gain adaptation’. European Control Conf., Zurich, Switzerland, 2013, pp. 890895.
    10. 10)
      • 29. Ganesan, M., Ezhilarasi, D.: ‘Train distance and speed estimation using multi sensor data fusion’, IET Radar Sonar Navig., 2019, 13, (4), pp. 664671.
    11. 11)
      • 14. Bartolini, G., Levant, A., Pisano, A., et al: ‘Adaptive second-order sliding mode control with uncertainty compensation’, Int. J. Control, 2016, 89, (9), pp. 19071919.
    12. 12)
      • 30. Nguyen, V.D.H., Huynh, X.-D., Nguyen, M.-T., et al: ‘Hierarchical sliding mode algorithm for athlete robot walking’, J. Robot., 2017, 2017, pp. 113.
    13. 13)
      • 1. https://www.era.europa.eu/Document-Register/Documents/ATO_Ops_Requirements_v1_7.pdf, Accessed on 26 August 2018.
    14. 14)
      • 13. Gonzalez, T., Moreno, J.A., Fridman, L.: ‘Variable gain super-twisting sliding mode control’, IEEE Trans. Autom. Control, 2012, 57, (8), pp. 21002105.
    15. 15)
      • 21. Yuri, S., Taleb, M., Plestan, F.: ‘A novel adaptive-gain supertwisting sliding mode controller: methodology and application’, Automatica, 2012, 48, (5), pp. 759769.
    16. 16)
      • 27. Pisano, A., Baev, S., Salimbeni, D., et al: ‘A new approach to causal output tracking for non-minimum phase nonlinear systems via combined first/second order sliding mode control’. Proc. 12th European Control Conf., Zurigo, Switzerland, 2013, pp. 32343239.
    17. 17)
      • 20. Plestan, F., Shtessel, Y., Bregeault, V.: ‘New methodologies for adaptive sliding mode control’, Int. J. Control, 2010, 83, (9), pp. 19071919.
    18. 18)
      • 4. Edwards, C., Spurgeon, S. K.: ‘Sliding mode control theory and applications’ (Taylor & Francis Publications, London, 1998, 1st edn.).
    19. 19)
      • 8. Laghrouche, S., Plestan, F., Glumineau, A.: ‘Higher order sliding mode control based on integral sliding mode’, Automatica, 2007, 43, (3), pp. 531537.
    20. 20)
      • 28. Zhang, B., Pi, Y.: ‘Hybrid first and second order sliding mode control for permanent magnet synchronous motor’. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, Kachsiung, 2012, pp. 10001004.
    21. 21)
      • 12. Levant, A.: ‘Sliding order and sliding accuracy in sliding mode control’, Int. J. Control, 1993, 58, (6), pp. 12471263.
    22. 22)
      • 3. Ganesan, M., Ezhilarasi, D., Benni, J.: ‘Hybrid model reference adaptive second order sliding mode controller for automatic train operation’, IET Control Theory Applic., 2017, 11, (8), pp. 12221233.
    23. 23)
      • 5. Jean-Jacques, S., Li, W.: ‘Applied nonlinear control’ (Prentice Hall, New Jersey, 1991), pp. 319388.
    24. 24)
      • 17. Huang, Y.J., Kuo, T.C., Chang, S.H.: ‘Adaptive sliding-mode control for nonlinear systems with uncertain parameters’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2008, 38, pp. 534539.
    25. 25)
      • 6. Levant, A.: ‘Chattering analysis’, IEEE Trans. Autom. Control, 2010, 55, (6), pp. 13801389.
    26. 26)
      • 24. Chang, J.: ‘Robust discrete-time model reference sliding-mode controller design with state and disturbance estimation’, IEEE Trans. Ind. Electron., 2008, 55, (11), pp. 40654074.
    27. 27)
      • 26. Bartolini, G., Orani, N., Pisano, A., et al: ‘A combined first-/second-order sliding-mode technique in the control of a jet-propelled vehicle’, Int. J. Control, 2008, 18, (4-5), pp. 570585.
    28. 28)
      • 16. Davila, A., Moreno, J.A., Fridman, L.: ‘Variable gains super-twisting algorithm: a Lyapunov based design’. Proc. of the American Control Conf., Baltimore, USA, 2010, vol. 2, pp. 968973.
    29. 29)
      • 15. Bera, M.K., Bandyopadhyay, B., Paul, A. K.: ‘Variable gain super-twisting control of GMAW process for pipeline welding variable gain super-twisting control’, J. Dyn. Syst. Meas. Control, 2016, 137, (7), pp. 17.
    30. 30)
      • 7. Djemai, M., Barbot, J. P., Busawon, K.: ‘Designing r-sliding mode control using smooth iterative manifolds’, Mediterranean J. Meas. Control, 2008, 4, (2), pp. 8693.
    31. 31)
      • 23. Utkin, V.I., Poznyak, A.S.: ‘Adaptive sliding mode control with application to super-twist algorithm: equivalent control method’, Automatica, 2013, 49, (1), pp. 3947.
    32. 32)
      • 10. Plestan, F., Glumineau, A., Laghrouche, S.: ‘A new algorithm for high order sliding mode control’, Int. J. Robust Nonlinear Control, 2008, 18, (4-5), pp. 441453.
    33. 33)
      • 32. Shigen, G., Dong, H., Chen, Y., et al: ‘Approximation-based robust adaptive automatic train control: an approach for actuator saturation’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (4), pp. 17331742.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2019.0038
Loading

Related content

content/journals/10.1049/iet-cta.2019.0038
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading