Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Semi-fuzzy CMAC and PD hybrid controller with compressed memory and semi-regularisation for electric load simulator

Cerebellar model articulation controller (CMAC) and proportional derivative hybrid controller is widely used for torque control in electric load simulator. However, due to some uncertain factors and especially the strong external interference of the surplus torque, the control stability could not be guaranteed. Here, a novel semi-regularised semi-fuzzy CMAC is proposed to get an efficient control effect. This study expands the weight smoothing into a semi-regularisation algorithm, and proves the stability of the hybrid control system based on the stability of the torque motor. To save storage space and reduce computation, the memory space is compressed and a semi-fuzzy mapping rule is proposed to smooth the output of CMAC with a high calculation speed. Both of simulation and experiment results demonstrate that this novel controller could keep stable and reach a good loading accuracy.

References

    1. 1)
      • 6. Cervantes, J., Yu, W., Salazar, S., et al: ‘Takagi–Sugeno dynamic neuro-fuzzy controller of uncertain nonlinear systems’, IEEE Trans. Fuzzy Syst., 2017, 25, (6), pp. 16011615.
    2. 2)
      • 25. Liao, Y., Koiwai, K., Yamamoto, T.: ‘Design and implementation of a hierarchical clustering-based CMAC-PID controller using closed-loop data’, IEEJ Trans. Electr. Electron. Eng., 2019, 14, (4), pp. 580589.
    3. 3)
      • 17. Wang, J., Tai, S., Lin, C.: ‘The application of an interactively recurrent self-evolving fuzzy CMAC classifier on face detection in color images’, Neural Comput. Appl., 2018, 29, (6), pp. 201213.
    4. 4)
      • 37. Macnab, C.J.B.: ‘Preventing overlearning in CMAC by using a short-term memory’, Int. J. Fuzzy Syst., 2017, 19, (6), pp. 20202032.
    5. 5)
      • 34. Wong, Y., Sideris, A.: ‘Learning convergence in the cerebellar model articulation controller’, IEEE Trans. Neural Netw., 1992, 3, (1), pp. 115121.
    6. 6)
      • 35. Lin, C.S., Chiang, C.T.: ‘Learning convergence of CMAC technique’, IEEE Trans. Neural Netw., 1997, 8, (6), pp. 12811292.
    7. 7)
      • 19. Lin, C., Yang, M.S., Chao, F., et al: ‘Adaptive filter design using type-2 fuzzy cerebellar model articulation controller’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (10), pp. 20842094.
    8. 8)
      • 27. Miller, W.T., Hewes, R.P., Glanz, F.H., et al: ‘Real-time dynamic control of an industrial manipulator using a neural-network-based learning controller’, IEEE Trans. Robot Autom., 1990, 6, (1), pp. 19.
    9. 9)
      • 16. Ma, H., Tseng, Y.C., Chen, L.I.: ‘A CMAC-based scheme for determining membership with classification of text strings’, Neural Comput. Appl., 2016, 27, (7), pp. 19591967.
    10. 10)
      • 31. Yang, B., Bao, R., Zhang, M., et al: ‘A KCMAC-PD controller with reduced memory and optimized mapping for the torque control of electric load simulator’, Trans. Inst. Meas. Control, 2018, 40, (7), pp. 23522363.
    11. 11)
      • 22. Nguyen, M.N.: ‘Fuzzy CMAC with incremental Bayesian ying-yang learning and dynamic rule construction’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2010, 40, (2), pp. 548552.
    12. 12)
      • 14. Mai, T., Wang, Y.: ‘Adaptive force/motion control system based on recurrent fuzzy wavelet CMAC neural networks for condenser cleaning crawler-type mobile manipulator robot’, IEEE Trans. Control Syst. Technol., 2014, 22, (5), pp. 19731982.
    13. 13)
      • 9. Lee, C.L., Lin, C.J.: ‘An efficient recurrent fuzzy CMAC model based on a dynamic-group–based hybrid evolutionary algorithm for identification and prediction applications’, Turk. J. Electr. Eng. Comput. Sci., 2018, 26, (4), pp. 20032015.
    14. 14)
      • 26. Reda, K., Abdelhafidh, M., Mounir, B.: ‘The CMAC neurocontroller for efficient learning in visual servoing’. Proc. ICASS'2018, Hong Kong, 2018, pp. 15.
    15. 15)
      • 20. Chiang, C., Lin, C.: ‘CMAC with general basis functions neural networks’, IEEE Trans. Neural Netw., 1996, 9, (7), pp. 11991211.
    16. 16)
      • 41. Yen, M.C., Hsu, C.F., Chung, I.H.: ‘Design of a CMAC-based smooth adaptive neural controller with a saturation compensator’, Neural Comput. Appl., 2012, 21, (1), pp. 3544.
    17. 17)
      • 10. Lee, C.H., Chang, F.Y., Lin, C.M.: ‘An efficient interval type-2 fuzzy CMAC for chaos time-series prediction and synchronization’, IEEE Trans. Cybern., 2014, 44, (3), pp. 329341.
    18. 18)
      • 32. Han, H.T., Yang, B.: ‘A CMAC based self-tuning intelligent PID controller for electric loading system’. Proc. IMCCC ‘13, Shenyang, China, 2013, pp. 14431448.
    19. 19)
      • 21. Chiang, C., Lin, Y.: ‘The learning convergence of high dimension CMAC_GBF’. Proc. IJCNN ‘08, Hong Kong, 2008, pp. 23332339.
    20. 20)
      • 4. Li, L., Peng, H., Kurths, J., et al: ‘Chaos–order transition in foraging behavior of ants’, Proc. Natl. Acad. Sci. USA, 2014, 111, (23), pp. 83928397.
    21. 21)
      • 39. Yeh, M.F., Tsai, C.H.: ‘Standalone CMAC control system with online learning ability’, IEEE Trans. Syst. Man Cybern. B, 2009, 40, (1), pp. 4353.
    22. 22)
      • 1. Tang, Y., Cui, M., Hua, C., et al: ‘Optimum design of fractional order PIλDμ controller for AVR system using chaotic ant swarm’, Expert Syst. Appl., 2012, 39, (8), pp. 68876896.
    23. 23)
      • 13. Chen, W., Huang, Y., Li, X., et al: ‘Double closed-loop charge-discharge control strategy of VRB based on CMAC’. Proc. Chinese Control Conf., Wuhan, 2018, pp. 27472752.
    24. 24)
      • 24. Wen, C.M., Cheng, M.Y.: ‘Development of a recurrent fuzzy CMAC with adjustable input space quantization and self-tuning learning rate for control of a dual-axis piezoelectric actuated micromotion stage’, IEEE Trans. Ind. Electron., 2013, 60, (11), pp. 51055115.
    25. 25)
      • 29. Yang, B., Bao, R., Han, H.T.: ‘Robust hybrid control based on PD and novel CMAC with improved architecture and learning scheme for electric load simulator’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 52715279.
    26. 26)
      • 40. Wu, T.F., Tsai, P.S., Chang, F.R., et al: ‘Adaptive fuzzy CMAC control for a class of nonlinear systems with smooth compensation’, IEE Proc., Control Theory Appl., 2006, 153, (6), pp. 647657.
    27. 27)
      • 5. Zhang, Y., Chen, S., Li, S., et al: ‘Adaptive projection neural network for kinematic control of redundant manipulators with unknown physical parameters’, IEEE Trans. Ind. Electron., 2018, 65, (6), pp. 49094920.
    28. 28)
      • 18. Nie, J., Linkens, D.A.: ‘FCMAC: A fuzzified cerebellar model articulation controller with self-organizing capacity’, Automatica, 1994, 30, (4), pp. 655664.
    29. 29)
      • 11. Jia, C., Yang, D., Pu, X.: ‘Ground harmonic current compensation based on cerebellar model articulation controller’, Neuroquantology, 2018, 16, (5), pp. 796800.
    30. 30)
      • 42. Lin, C.M., Li, H.Y.: ‘Intelligent control using the wavelet fuzzy CMAC backstepping control system for two-axis linear piezoelectric ceramic motor drive systems’, IEEE Trans. Fuzzy Syst., 2014, 22, (4), pp. 791802.
    31. 31)
      • 23. Lin, F., Lu, K., Yang, B.: ‘Recurrent fuzzy cerebellar model articulation neural network based power control of a single-stage three-phase grid-connected photovoltaic system during grid faults’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 12581268.
    32. 32)
      • 2. Chen, Y., Li, L., Peng, H., et al: ‘Particle swarm optimizer with two differential mutation’, Appl. Soft Comput. J., 2017, 61, pp. 314330.
    33. 33)
      • 46. Chen, F.C., Chang, C.H.: ‘Practical stability issues in CMAC neural network control systems’, IEEE Trans. Control Syst. Technol., 1994, 4, (1), pp. 8691.
    34. 34)
      • 45. Lin, C., Huynh, T.: ‘Function-link fuzzy cerebellar model articulation controller design for nonlinear chaotic systems using TOPSIS multiple attribute decision-making method’, Int. J. Fuzzy Syst., 2018, 20, (6), pp. 18391856.
    35. 35)
      • 15. Tao, T., Su, S.F.: ‘Moment adaptive fuzzy control and residue compensation’, IEEE Trans. Fuzzy Syst., 2014, 22, (4), pp. 803815.
    36. 36)
      • 12. Lin, C.M., Li, H.Y.: ‘Dynamic Petri fuzzy cerebellar model articulation controller design for a magnetic levitation system and a two-axis linear piezoelectric ceramic motor drive system’, IEEE Trans. Control Syst. Technol., 2015, 23, (2), pp. 693699.
    37. 37)
      • 38. Zhou, X., Li, Y., Yue, H., et al: ‘An improved cerebellar model articulation controller based on the compound algorithms of credit assignment and optimized smoothness for a three-axis inertially stabilized platform’, Mechatronics, 2018, 53, pp. 95108.
    38. 38)
      • 28. Yang, B., Han, H.T.: ‘A CMAC-PD compound torque controller with fast learning capacity and improved output smoothness for electric load simulator’, Int. J. Control Autom. Syst., 2014, 12, (4), pp. 805812.
    39. 39)
      • 43. Lin, C.M., Li, H.Y.: ‘Adaptive dynamic sliding-mode fuzzy CMAC for voice coil motor using asymmetric Gaussian membership function’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 56625671.
    40. 40)
      • 8. Albus, J.S.: ‘Data storage in the cerebellar model articulation controller (CMAC)’, J. Dyn. Syst. Meas. Control, 1975, 97, (3), pp. 228233.
    41. 41)
      • 36. Macnab, C.J.B.: ‘Using RBFs in a CMAC to prevent parameter drift in adaptive control’, Neurocomputing, 2016, 205, (C), pp. 4552.
    42. 42)
      • 44. Lin, C.M., Li, H.Y.: ‘A novel adaptive wavelet fuzzy cerebellar model articulation control system design for voice coil motors’, IEEE Trans. Ind. Electron., 2012, 59, (4), pp. 20242033.
    43. 43)
      • 47. Macnab, C.J.B.: ‘Modifying CMAC adaptive control with weight smoothing in order to avoid overlearning and bursting’, Neural Comput. Appl., 2017, 31, (7), pp. 22072216, doi: 10.1007/s00521-017-3182-6.
    44. 44)
      • 48. Kraft, L.G., Pallotta, J.: ‘Real-time vibration control using CMAC neural networks with weight smoothing’. Proc. American Control Conf., Chicago, 2000, pp. 39393943.
    45. 45)
      • 7. Albus, J.S.: ‘A new approach to manipulator control: the cerebellar model articulation controller (CMAC)’, Trans. ASME J. Dyn. Syst. Meas. Control, 1975, 97, (3), pp. 220227.
    46. 46)
      • 30. Yang, B., Han, H.T., Bao, R.: ‘An intelligent CMAC-PD torque controller with anti-over-learning scheme for electric load simulator’, Trans. Inst. Meas. Control, 2016, 38, (2), pp. 192200.
    47. 47)
      • 33. Zhang, M., Yang, B.: ‘A naive method of applying fuzzy logic to CMAC in electric load simulator’, Trans. Inst. Meas. Control, 2017, 39, (10), pp. 15901599.
    48. 48)
      • 3. Chen, Y., Li, L., Xiao, J., et al: ‘Particle swarm optimizer with crossover operation’, Eng. Appl. Artif. Intell., 2018, 70, pp. 159169.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.6411
Loading

Related content

content/journals/10.1049/iet-cta.2018.6411
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address