access icon free State bounding for positive singular discrete-time systems with time-varying delay and bounded disturbances

This study deals with the problem of state bounding for positive singular discrete-time systems with time-varying delay and bounded disturbances. First, the authors derive some new conditions for the existence of componentwise bounds of the state vector of the systems without disturbances. Then, in the case of systems with bounded disturbances, they obtain a sufficient condition for the existence of componentwise ultimate bounds. Since the conditions are given in terms of the spectral radius of the system matrices, they can check them easily and compute directly the smallest componentwise ultimate bound. In addition, the problem of state bounding for positive time-varying singular systems is also investigated in this study. Finally, numerical examples are provided to illustrate the effectiveness and advantages of their results.

Inspec keywords: Lyapunov methods; matrix algebra; linear systems; discrete time systems; delays; time-varying systems; continuous time systems

Other keywords: state vector; bounded disturbances; discrete-time systems; time-varying delay; positive time-varying singular systems; componentwise ultimate bounds; system matrices; directly the smallest componentwise ultimate; componentwise bounds; state bounding

Subjects: Stability in control theory; Algebra; Control system analysis and synthesis methods; Time-varying control systems; Discrete control systems; Linear control systems

References

    1. 1)
      • 3. Feng, Z., Lam, J.: ‘On reachable set estimation of singular systems’, Automatica, 2015, 52, pp. 146153.
    2. 2)
      • 4. Lam, J., Xu, S.: ‘Robust control and filtering of singular systems’ (Springer, Berlin, 2006).
    3. 3)
      • 29. Nguyen, M.C., Trinh, H., Nam, P.T.: ‘Linear functional observers with guaranteed ϵ-convergence for discrete time-delay systems with input/output disturbances’, Int. J. Syst. Sci., 2016, 47, (13), pp. 31933205.
    4. 4)
      • 7. Haddad, W.M., Chellaboina, V., Hui, Q.: ‘Nonnegative and compartmental dynamical systems’ (Princeton University Press, Princeton, 2010).
    5. 5)
      • 43. Fei, Z.Y., Guan, C.X., Shi, P.: ‘Reachable set estimation for discrete-time switched system with application to time-delay system’, Int. J. Robust. Nonlinear Control, 2018, 28, (6), pp. 24682483.
    6. 6)
      • 22. Abedor, J., Nagpal, K., Poola, K.: ‘Linear matrix inequality approach to peak-to-peak minimization’, Int. J. Robust Nonlinear Control, 1996, 6, pp. 899927.
    7. 7)
      • 25. Chen, Y., Lam, J.: ‘Estimation and synthesis of reachable set for discrete-time periodic systems’, Optim. Control Appl. Methods, 2016, 37, (5), pp. 885901.
    8. 8)
      • 27. Feng, Z., Zheng, W.X.: ‘Improved reachable set estimation of discrete-time systems with time-varying delay’, Optim. Control Appl. Methods, 2017, 38, (6), pp. 10811090.
    9. 9)
      • 35. Nam, P.T., Trinh, H.M., Pathirana, P.N.: ‘Componentwise ultimate bounds for positive discrete time-delay systems perturbed by interval disturbances’, Automatica, 2016, 72, pp. 153157.
    10. 10)
      • 32. Chen, Y., Lam, J., Cui, Y., et al: ‘Reachable set estimation and synthesis for periodic positive systems’, IEEE Trans. Cybern., 2019, Doi: 10.1109/TCYB.2019.2908676.
    11. 11)
      • 36. Chen, Y., Lam, J., Shen, J., et al: ‘Reachable set estimation for switched positive systems’, Int. J. Syst. Sci., 2018, 49, (11), pp. 23412352.
    12. 12)
      • 1. Campbell, S.L.: ‘Singular systems of differential equations’ (Pitman, London, 1980).
    13. 13)
      • 6. Buzurovic, I.M., Debeljkovic, D.L.J.: ‘Contact problem and controllability for singular systems in biomedical robotics’, Int. J. Inf. Syst. Sci., 2010, 6, pp. 128141.
    14. 14)
      • 39. Li, J., Zhao, Y., Feng, Z., et al: ‘Reachable set estimation and dissipativity for discrete-time T–S fuzzy singular systems with time-varying delays’, Nonlinear Anal. Hybrid Syst., 2019, 31, pp. 166179.
    15. 15)
      • 41. Berman, A., Plemmons, R.J.: ‘Nonnegative matrices in the mathematical science’ (SIAM, Philadelphia, 1994).
    16. 16)
      • 14. Thuan, M.V.: ‘Robust finite-time guaranteed cost control for positive systems with multiple time delays’, J. Syst. Sci. Complexity, 2019, 32, (3), pp. 496509.
    17. 17)
      • 42. Chen, X., Chen, M., Qi, W., et al: ‘Dynamic output-feedback control for continuous-time interval positive systems under L1 performance’, Appl. Math. Comput., 2016, 289, pp. 4859.
    18. 18)
      • 17. Leyva, H., Quiroz, G., Carrillo, F.A., et al: ‘Insulin stabilisation in artificial pancreas: a positive control approach’, IET Control Theory Applic., 2019, 13, (7), pp. 970978.
    19. 19)
      • 16. Agahi, H., Yazdanpanah, M.J.: ‘Constrained control approach for monotone systems: application to tumour chemotherapy’, IET Control Theory Applic., 2019, 13, (7), pp. 9961005.
    20. 20)
      • 26. Chen, Y., Lam, J., Zhang, B.: ‘Estimation and synthesis of reachable set for switched linear systems’, Automatica, 2016, 63, pp. 122132.
    21. 21)
      • 28. Lam, J., Zhang, B.Y., Chen, Y., et al: ‘Reachable set estimation for discrete-time linear systems with time delays’, Int. J. Robust. Nonlinear Control, 2015, 25, pp. 269281.
    22. 22)
      • 20. Wang, L.Q., Chen, X., Shen, J.: ‘Positive filtering for positive 2D fuzzy systems under l1 performance’, IET Control Theory Applic., 2019, 13, (7), pp. 10241030.
    23. 23)
      • 2. Dai, L.: ‘Singular control systems’ (Springer-Verlag, Berlin, 1989).
    24. 24)
      • 10. Mayumi, K.: ‘An epistemological critique of the open Leontief dynamic model: balanced and sustained growth, delays, and anticipatory systems theory’, Struct. Change Econ. Dyn., 2005, 16, pp. 540556.
    25. 25)
      • 23. Hwang, I., Stipanovic, D.M., Tomlin, C.J.: ‘Applications of polytopic approximations of reachable sets to linear dynamic games and a class of nonlinear systems’. Proc. of American Control Conf., Denver, Colorado, 2003, pp. 46134619.
    26. 26)
      • 37. Nam, P.T., Hiep, L.T.: ‘State bounding for positive coupled differential-difference equations with bounded disturbances’, IET Control Theory Applic., 2019, 13, (11), pp. 17281735.
    27. 27)
      • 34. Nam, P.T., Pathirana, P.N., Trinh, H.: ‘Partial state bounding with a pre-specified time of non-linear discrete systems with time-varying delays’, IET Control Theory Applic., 2016, 10, pp. 14961502.
    28. 28)
      • 30. That, N.D., Nam, P.T., Ha, Q.P.: ‘Reachable set bounding for linear discrete-time systems with delays and bounded disturbances’, J. Optim. Theory Applic., 2013, 157, pp. 96107.
    29. 29)
      • 33. Nam, P.T., Trinh, H., Pathirana, P.N.: ‘Minimization of state bounding for perturbed positive systems with delays’, SIAM J. Control Optim., 2018, 56, pp. 17391755.
    30. 30)
      • 18. Zhang, Y., Zhao, J.: ‘Switching tracking control for linear time-invariant systems without overshoot: a positive systems method’, IET Control Theory Applic., 2019, 13, (7), pp. 952959.
    31. 31)
      • 15. Xiang, W., Lam, J., Shen, J.: ‘Stability analysis and L1-gain characterization for switched positive systems under dwell-time constraint’, Automatica, 2017, 85, pp. 18.
    32. 32)
      • 13. Sau, N.H., Phat, V.N.: ‘Exponential stabilisation of positive singular linear discrete-time delay systems with bounded control’, IET Control Theory Applic., 2019, 13, (7), pp. 905911.
    33. 33)
      • 40. Li, S., Xiang, Z.: ‘Stability, l1-gain and l-gain analysis for discrete-time positive switched singular delayed systems’, Appl. Math. Comput., 2016, 275, pp. 95106.
    34. 34)
      • 31. Li, J., Feng, Z., Zhao, Y., et al: ‘Reachable set estimation for discrete-time bilinear systems with time-varying delays’, J. Franklin Inst., 2018, 355, (13), pp. 57215735.
    35. 35)
      • 21. Zhang, D., Zhang, Q., Du, B.: ‘Positive L1 filter design for positive piecewise homogeneous Markovian jump T–S fuzzy system’, IET Control Theory Applic., 2019, 13, (7), pp. 10151023.
    36. 36)
      • 12. Liu, Q.: ‘Separable Lyapunov-like functions for switched positive non-linear systems via a contractive approach’, IET Control Theory Applic., 2019, 13, (7), pp. 943951.
    37. 37)
      • 24. Hu, T., Teel, A.R., Zaccarian, L.: ‘Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions’, IEEE Trans. Autom. Control, 2006, 51, pp. 17701786.
    38. 38)
      • 19. Nascimento, F.T., Cunha, J.P.V.S.: ‘Positive filter synthesis for sliding-mode control’, IET Control Theory Applic., 2019, 13, (7), pp. 10061014.
    39. 39)
      • 11. Cui, Y., Shen, J., Feng, Z., et al: ‘Stability analysis for positive singular systems with time-varying delays’, IEEE Trans. Autom. Control, 2018, 63, (5), pp. 14871494.
    40. 40)
      • 8. Farina, L., Rinaldi, S.: ‘Positive linear systems: Theory and applications’ (Wiley-Interscience, New York City, 2000).
    41. 41)
      • 38. Li, J., Feng, Z., Zhang, C.: ‘Reachable set estimation for discrete-time singular systems’, Asian J. Control, 2017, 19, (5), pp. 18621870.
    42. 42)
      • 5. Duan, G.R.: ‘Analysis and design of descriptor linear systems’ (Springer, Sunderland, 2009).
    43. 43)
      • 9. Caswell, H.: ‘Construction, analysis, and interpretation’ (Sinauer, Sunderland, 2001).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.6384
Loading

Related content

content/journals/10.1049/iet-cta.2018.6384
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading