http://iet.metastore.ingenta.com
1887

Stochastic stability of non-linear impulsive semi-Markov jump systems

Stochastic stability of non-linear impulsive semi-Markov jump systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the problem of stochastic stability of non-linear impulsive semi-Markov jump systems is investigated. Using the method of stochastic Lyapunov functions, the authors develop some sufficient conditions about stochastic stability for a class of non-linear impulsive semi-Markov jump systems with unbounded transition rates. Particularly, the obtained results generalise and complement some published literatures. Finally, some examples are given to show the effectiveness and advantages of the proposed results.

References

    1. 1)
      • 1. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: ‘Theory of impulsive differential equations’ (World Scientific, Singapore, 1989).
    2. 2)
      • 2. Guan, Z., Chen, G.: ‘On delayed impulsive Hopfield neural networks’, Neural Netw., 1999, 12, (2), pp. 273280.
    3. 3)
      • 3. Xu, H., Liu, X., Teo, K.L.: ‘A LMI approach to stability analysis and synthesis of impulsive switched systems with time delays’, Nonlinear Anal., Hybrid Syst., 2008, 2, (1), pp. 3850.
    4. 4)
      • 4. Zhang, Y., Sun, J., Feng, G.: ‘Impulsive control of discrete systems with time delay’, IEEE Trans. Autom. Control, 2009, 54, (4), pp. 830834.
    5. 5)
      • 5. Zhang, Y., Wang, C.: ‘Robust stochastic stability of uncertain discrete-time impulsive Markovian jump delay systems with multiplicative noises’, Int. J. Syst. Sci., 2015, 46, (12), pp. 22102220.
    6. 6)
      • 6. Lu, J., Ho, D.W.C., Cao, J.: ‘A unified synchronization criterion for impulsive dynamical networks’, Automatica, 2010, 46, (7), pp. 12151221.
    7. 7)
      • 7. Wu, S.J., Zhou, B.: ‘Existence and uniqueness of stochastic differential equations with random impulses and Markovian switching under non-Lipschitz conditions’, Acta Math. Sin. Engl. Ser., 2011, 27, (3), pp. 519536.
    8. 8)
      • 8. Li, C., Wu, S., Feng, G., et al: ‘Stabilizing effects of impulses in discrete-time delayed neural networks’, IEEE Trans. Neural Netw., 2011, 22, (2), pp. 323329.
    9. 9)
      • 9. Liu, B., Hill, D.J.: ‘Stability via hybrid-event-time Lyapunov function and impulsive stabilization for discrete-time delayed switched systems’, SIAM J. Control Optim., 2014, 52, (2), pp. 13381365.
    10. 10)
      • 10. Xu, L., Ge, S.S.: ‘The pth moment exponential ultimate boundedness of impulsive stochastic differential systems’, Appl. Math. Lett., 2015, 42, pp. 2229.
    11. 11)
      • 11. Liu, X., Zhang, K.: ‘Synchronization of linear dynamical networks on time scales: pinning control via delayed impulses’, Automatica, 2016, 72, pp. 147152.
    12. 12)
      • 12. Li, X., Song, S.: ‘Stabilization of delay systems: delay-dependent impulsive control’, IEEE Trans. Autom. Control, 2017, 62, (1), pp. 406411.
    13. 13)
      • 13. Li, X., Li, P., Wang, Q.G.: ‘Input/output-to-state stability of impulsive switched systems’, Syst. Control Lett., 2018, 116, pp. 17.
    14. 14)
      • 14. Cheng, P., Deng, F., Yao, F.: ‘Almost sure exponential stability and stochastic stabilization of stochastic differential systems with impulsive effects’, Nonlinear Anal., Hybrid Syst., 2018, 30, pp. 106117.
    15. 15)
      • 15. Lin, Y., Zhang, Y.: ‘Synchronization of stochastic impulsive discrete-time delayed networks via pinning control’, Neurocomputing, 2018, 286, pp. 3140.
    16. 16)
      • 16. Yang, H., Zhang, Y.: ‘Stability of positive delay systems with delayed impulses’, IET Control Theory Appl., 2018, 12, (2), pp. 194205.
    17. 17)
      • 17. Zhu, Q., Cao, J.: ‘Stability of Markovian jump neural networks with impulse control and time varying delays’, Nonlinear Anal. RWA, 2012, 13, pp. 22592270.
    18. 18)
      • 18. Sivaranjani, K., Rakkiyappan, R.: ‘Delayed impulsive synchronization of nonlinearly coupled Markovian jumping complex dynamical networks with stochastic perturbations’, Nonlinear Dyna., 2017, 88, pp. 19171934.
    19. 19)
      • 19. Boukas, E., Liu, Z.: ‘Robust H control of discrete-time Markovian jump linear systems with mode-dependent time delays’, IEEE Trans. Autom. Control, 2001, 46, (12), pp. 19181924.
    20. 20)
      • 20. Xiong, J., Lam, J., Gao, H., et al: ‘On robust stabilization of Markov jump systems with uncertain switching probabilities’, Automatica, 2005, 41, pp. 897903.
    21. 21)
      • 21. Costa, O.L.V., Paulo, W.L.D.: ‘Indefinite quadratic with linear costs optimal control of Markov jump with multiplicative noise systems’, Automatica, 2007, 43, pp. 587597.
    22. 22)
      • 22. Bolzern, P., Colaneri, P., Nicolao, G.D.: ‘Stochastic stability of positive Markov jump linear systems’, Automatica, 2014, 50, pp. 11811187.
    23. 23)
      • 23. Hu, H., Xu, L.: ‘Existence and uniqueness theorems for periodic Markov process and applications to stochastic functional differential equations’, J. Math. Anal. Appl., 2018, 466, pp. 896926.
    24. 24)
      • 24. Zhang, L., Leng, Y., Colaneri, P.: ‘Stability and stabilization of discrete-time semi-Markov jump linear systems via semi-Markov kernel approach’, IEEE Trans. Autom. Control, 2016, 61, (2), pp. 503508.
    25. 25)
      • 25. Zhang, L., Yang, T., Colaneri, P.: ‘Stability and stabilization of semi-Markov jump linear systems with exponentially modulated periodic distributions of sojourn time’, IEEE Trans. Autom. Control, 2017, 62, (6), pp. 28702885.
    26. 26)
      • 26. Howard, R.A.: ‘System analysis of semi-Markov processes’, IEEE Trans. Military Electron., 1964, 8, (2), pp. 114124.
    27. 27)
      • 27. Kao, E.P.C.: ‘A semi-Markov population model with application to hospital planning’, IEEE Trans. Syst. Man Cybern., 1973, SMC-3, (4), pp. 327336.
    28. 28)
      • 28. Ciardo, G., Marie, R.A., Sericola, B., et al: ‘Performability analysis using semi-Markov reward processes’, IEEE Trans. Comput., 1990, 39, (10), pp. 12511264.
    29. 29)
      • 29. Barbu, V., Limnios, N.: ‘Empirical estimation for discrete-time semi-Markov processes with applications in reliability’, J. Nonparametric Stat., 2006, 18, (7-8), pp. 483498.
    30. 30)
      • 30. Hernandez-Varga, E., Colaneri, P., Middleton, R., et al: ‘Discrete-time control for switched positive systems with application to mitigating viral escape’, Int. J. Robust Nonlinear Control, 2011, 21, (10), pp. 10931111.
    31. 31)
      • 31. Vassiliou, P.C.G.: ‘Fuzzy semi-Markov migration process in credit risk’, Fuzzy Sets Syst., 2013, 223, pp. 3958.
    32. 32)
      • 32. Huang, J., Shi, Y.: ‘Stochastic stability of semi-Markov jump linear systems: an LMI approach’. 2011 50th IEEE Conf on Decision and Control and European Control Conf. (CDC-ECC), Orlando, USA, December 2011, pp. 46684673.
    33. 33)
      • 33. Li, F., Wu, L., Shi, P.: ‘Stochastic stability of semi-Markovian jump systems with mode-dependent delays’, Int. J. Robust Nonlinear Control, 2014, 24, pp. 33173330.
    34. 34)
      • 34. Wei, Y., Qiu, J., Karimi, H.R., et al: ‘A novel memory filtering design for semi-Markovian jump time-delay systems’, IEEE Trans. Syst. Man Cybern., 2017, PP, (99), pp. 113.
    35. 35)
      • 35. Yang, T., Zhang, L., Yin, X.: ‘Time-varying gain-scheduling σ-error mean square stabilisation of semi-Markov jump linear systems’, IET Control Theory Appl., 2016, 10, (11), pp. 12151223.
    36. 36)
      • 36. Hou, Z., Luo, J., Shi, P., et al: ‘Stochastic stability of Ito differential equations with semi-Markovian jump parameters’, IEEE Trans. Autom. Control, 2006, 51, (8), pp. 13831387.
    37. 37)
      • 37. Qi, W., Park, J.H., Cheng, J.: ‘Robust stabilisation for non-linear time-delay semi-Markovian jump systems via sliding mode control’, IET Control Theory Appl., 2017, 11, (10), pp. 15041513.
    38. 38)
      • 38. Ning, Z., Zhang, L., Lam, J.: ‘Stability and stabilization of a class of stochastic switching systems with lower bound of sojourn time’, Automatica, 2018, 92, pp. 1828.
    39. 39)
      • 39. Wang, J., Ma, S., Zhang, C.: ‘Stability analysis and stabilization for nonlinear continuous-time descriptor semi-Markov jump systems’, Appl. Math. Comput., 2016, 279, pp. 90102.
    40. 40)
      • 40. Mendenhall, M., Beaver, R.J., Beaver, B.M.: ‘Introduction to probability and statistics’ (Brooks/Cole-Thomson Learning, Pacific Grove, 2003, 11th edn.).
    41. 41)
      • 41. Huang, L.: ‘Linear algebria in systems and control theory’ (Science Press, Beijing, 1984).
    42. 42)
      • 42. Zhu, S., Sun, K., Chang, W., et al: ‘Stochastic suppression and stabilization of nonlinear hybrid delay systems with general one-sided polynomial growth condition and decay rate’, IET Control Theory Appl., 2018, 12, (7), pp. 933941.
    43. 43)
      • 43. Zhu, S., Shi, P., Lim, C-C.: ‘New criteria for stochastic suppression and stabilization of hybrid functional differential systems’, Int. J. Robust Nonlinear Control, 2018, 28, (13), pp. 39463958.
    44. 44)
      • 44. Zhu, S., Wang, M., Liu, Y.: ‘Adaptive decentralized control of fluid networks with random disturbances’, IET Control Theory Appl., 2017, 11, (18), pp. 33213328.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2018.6383
Loading

Related content

content/journals/10.1049/iet-cta.2018.6383
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address